Theory Of Sets by N. BourbakiTheory Of Sets by N. Bourbaki

Theory Of Sets

byN. Bourbaki

Paperback | October 20, 2004

Pricing and Purchase Info

$52.50

Earn 263 plum® points

Prices and offers may vary in store

Out of stock online

Not available in stores

about

This is a softcover reprint of the English translation of 1968 of N. Bourbaki's, Théorie des Ensembles (1970).

Title:Theory Of SetsFormat:PaperbackDimensions:414 pagesPublished:October 20, 2004Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3540225250

ISBN - 13:9783540225256

Reviews

Table of Contents

I. Description of Formal Mathematics.- § 1. Terms and relations.- 1. Signs and assemblies.- 2. Criteria of substitution.- 3. Formative constructions.- 4. Formative criteria.- § 2. Theorems.- 1. The axioms.- 2. Proofs.- 3. Substitutions in a theory.- 4. Comparison of theories.- § 3. Logical theories.- 1. Axioms.- 2. First consequences.- 3. Methods of proof.- 4. Conjunction.- 5. Equivalence.- § 4. Quantified theories.- 1. Definition of quantifiers.- 2. Axioms of quantified theories.- 3. Properties of quantifiers.- 4. Typical quantifiers.- § 5. Equalitarian theories.- 1. The axioms.- 2. Properties of equality.- 3. Functional relations.- Appendix. Characterization of terms and relations.- 1. Signs and words.- 2. Significant words.- 3. Characterization of significant words.- 4. Application to assemblies in a mathematical theory.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Exercises for § 4.- Exercises for § 5.- Exercises for the Appendix.- II. Theory of Sets.- § 1. Collectivizing relations.- 1. The theory of sets.- 2. Inclusion.- 3. The axiom of extent.- 4. Collectivizing relations.- 5. The axiom of the set of two elements.- 6. The scheme of selection and union.- 7. Complement of a set. The empty set.- § 2. Ordered pairs.- 1. The axiom of the ordered pair.- 2. Product of two sets.- § 3. Correspondences.- 1. Graphs and correspondences.- 2. Inverse of a correspondence.- 3. Composition of two correspondences.- 4. Functions.- 5. Restrictions and extensions of functions.- 6. Definition of a function by means of a term.- 7. Composition of two functions. Inverse function.- 8. Retractions and sections.- 9. Functions of two arguments.- § 4. Union and intersection of a family of sets.- 1. Definition of the union and the intersection of a family of sets.- 2. Properties of union and intersection.- 3. Images of a union and an intersection.- 4. Complements of unions and intersections.- 5. Union and intersection of two sets.- 6. Coverings.- 7. Partitions.- 8. Sum of a family of sets.- § 5. Product of a family of sets.- 1. The axiom of the set of subsets.- 2. Set of mappings of one set into another.- 3. Definitions of the product of a family of sets.- 4. Partial products.- 5. Associativity of products of sets.- 6. Distributivity formulae.- 7. Extension of mappings to products.- § 6. Equivalence relations.- 1. Definition of an equivalence relation.- 2. Equivalence classes; quotient set.- 3. Relations compatible with an equivalence relation.- 4. Saturated subsets.- 5. Mappings compatible with equivalence relations.- 6. Inverse image of an equivalence relation; induced equivalence relation.- 7. Quotients of equivalence relations.- 8. Product of two equivalence relations.- 9. Classes of equivalent objects.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Exercises for § 4.- Exercises for § 5.- Exercises for § 6.- III. Ordered Sets, Cardinals, Integers.- § 1. Order relations. Ordered sets.- 1. Definition of an order relation.- 2. Preorder relations.- 3. Notation and terminology.- 4. Ordered subsets. Product of ordered sets.- 5. Increasing mappings.- 6. Maximal and minimal elements.- 7. Greatest element and least element.- 8. Upper and lower bounds.- 9. Least upper bound and greatest lower bound.- 10. Directed sets.- 11. Lattices.- 12. Totally ordered sets.- 13. Intervals.- § 2. Well-ordered sets.- 1. Segments of a well-ordered set.- 2. The principle of transfinite induction.- 3. Zermelo's theorem.- 4. Inductive sets.- 5. Isomorphisms of well-ordered sets.- 6. Lexicographic products.- § 3. Equipotent sets. Cardinals.- 1. The cardinal of a set.- 2. Order relation between cardinals.- 3. Operations on cardinals.- 4. Properties of the cardinals 0 and 1.- 5. Exponentiation of cardinals.- 6. Order relation and operations on cardinals.- § 4. Natural integers. Finite sets.- 1. Definition of integers.- 2. Inequalities between integers.- 3. The principle of induction.- 4. Finite subsets of ordered sets.- 5. Properties of finite character.- § 5. Properties of integers.- 1. Operations on integers and finite sets.- 2. Strict inequalities between integers.- 3. Intervals in sets of integers.- 4. Finite sequences.- 5. Characteristic functions of sets.- 6. Euclidean division.- 7. Expansion to base b.- 8. Combinatorial analysis.- § 6. Infinite sets.- 1. The set of natural integers.- 2. Definition of mappings by induction.- 3. Properties of infinite cardinals.- 4. Countable sets.- 5. Stationary sequences.- § 7. Inverse limits and direct limits.- 1. Inverse limits.- 2. Inverse systems of mappings.- 3. Double inverse limit.- 4. Conditions for an inverse limit to be non-empty.- 5. Direct limits.- 6. Direct systems of mappings.- 7. Double direct limit. Product of direct limits.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Exercises for § 4.- Exercises for § 5.- Exercises for § 6.- Exercises for § 7.- Historical Note on § 5.- IV. Structures.- § 1. Structures and isomorphisms.- 1. Echelons.- 2. Canonical extensions of mappings.- 3. Transportable relations.- 4. Species of structures.- 5. Isomorphisms and transport of structures.- 6. Deduction of structures.- 7. Equivalent species of structures.- § 2. Morphisms and derived structures.- 1. Morphisms.- 2. Finer structures.- 3. Initial structures.- 4. Examples of initial structures.- 5. Final structures.- 6. Examples of final structures.- § 3. Universal mappings.- 1. Universal sets and mappings.- 2. Existence of universal mappings.- 3. Examples of universal mappings.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Historical Note on Chapters I-IV.- Summary of Results.- § 1. Elements and subsets of a set.- § 2. Functions.- § 3. Products of sets.- § 4. Union, intersection, product of a family of sets.- § 5. Equivalence relations and quotient sets.- § 6. Ordered sets.- § 7. Powers. Countable sets.- § 8. Scales of sets. Structures.- Index of notation.- Index of terminology.- Axioms and schemes of the theory of sets.