Einstein: His Life and Universe by Walter IsaacsonEinstein: His Life and Universe by Walter Isaacson

Einstein: His Life and Universe

byWalter Isaacson

Paperback | May 13, 2008

Pricing and Purchase Info


Earn 120 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Available in stores


By the author of the acclaimed bestsellers Benjamin Franklin and Steve Jobs, this is the definitive biography of Albert Einstein.

How did his mind work? What made him a genius? Isaacson’s biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.

Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk—a struggling father in a difficult marriage who couldn’t get a teaching job or a doctorate—became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom, and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.

These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
CONTENTS Acknowledgments Main Characters CHAPTER ONE The Light-Beam Rider CHAPTER TWO Childhood, 1879-1896 CHAPTER THREE The Zurich Polytechnic, 1896-1900 CHAPTER FOUR The Lovers, 1900-1904 CHAPTER FIVE The Miracle Year: Quanta and Molecules, 1905 CHAPTER SIX Special Relativity, 1905 ...
Title:Einstein: His Life and UniverseFormat:PaperbackProduct dimensions:704 pages, 9.25 X 6.12 X 1.9 inShipping dimensions:704 pages, 9.25 X 6.12 X 1.9 inPublished:May 13, 2008Publisher:Simon & SchusterLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0743264746

ISBN - 13:9780743264747

Appropriate for ages: All ages

Look for similar items by category:

Read from the Book

Ôªø CHAPTER ONE THE LIGHT-BEAM RIDER "I promise you four papers," the young patent examiner wrote his friend. The letter would turn out to bear some of the most significant tidings in the history of science, but its momentous nature was masked by an impish tone that was typical of its author. He had, after all, just addressed his friend as "you frozen whale" and apologized for writing a letter that was "inconsequential babble." Only when he got around to describing the papers, which he had produced during his spare time, did he give some indication that he sensed their significance. "The first deals with radiation and the energy properties of light and is very revolutionary," he explained. Yes, it was indeed revolutionary. It argued that light could be regarded not just as a wave but also as a stream of tiny particles called quanta. The implications that would eventually arise from this theory -- a cosmos without strict causality or certainty -- would spook him for the rest of his life. "The second paper is a determination of the true sizes of atoms." Even though the very existence of atoms was still in dispute, this was the most straightforward of the papers, which is why he chose it as the safest bet for his latest attempt at a doctoral thesis. He was in the process of revolutionizing physics, but he had been repeatedly thwarted in his efforts to win an academic job or even get a doctoral degree, which he hoped might get him promoted from a third- to a second-class examiner at the patent office. The third paper explained the jittery motion of microscopic particles in liquid by using a statistical analysis of random collisions. In the process, it established that atoms and molecules actually exist. "The fourth paper is only a rough draft at this point, and is an electrodynamics of moving bodies which employs a modification of the theory of space and time." Well, that was certainly more than inconsequential babble. Based purely on thought experiments -- performed in his head rather than in a lab -- he had decided to discard Newton''s concepts of absolute space and time. It would become known as the Special Theory of Relativity. What he did not tell his friend, because it had not yet occurred to him, was that he would produce a fifth paper that year, a short addendum to the fourth, which posited a relationship between energy and mass. Out of it would arise the best-known equation in all of physics: E=mc2. Looking back at a century that will be remembered for its willingness to break classical bonds, and looking ahead to an era that seeks to nurture the creativity needed for scientific innovation, one person stands out as a paramount icon of our age: the kindly refugee from oppression whose wild halo of hair, twinkling eyes, engaging humanity, and extraordinary brilliance made his face a symbol and his name a synonym for genius. Albert Einstein was a locksmith blessed with imagination and guided by a faith in the harmony of nature''s handiwork. His fascinating story, a testament to the connection between creativity and freedom, reflects the triumphs and tumults of the modern era. Now that his archives have been completely opened, it is possible to explore how the private side of Einstein -- his nonconformist personality, his instincts as a rebel, his curiosity, his passions and detachments -- intertwined with his political side and his scientific side. Knowing about the man helps us understand the wellsprings of his science, and vice versa. Character and imagination and creative genius were all related, as if part of some unified field. Despite his reputation for being aloof, he was in fact passionate in both his personal and scientific pursuits. At college he fell madly in love with the only woman in his physics class, a dark and intense Serbian named Mileva Maric´. They had an illegitimate daughter, then married and had two sons. She served as a sounding board for his scientific ideas and helped to check the math in his papers, but eventually their relationship disintegrated. Einstein offered her a deal. He would win the Nobel Prize someday, he said; if she gave him a divorce, he would give her the prize money. She thought for a week and accepted. Because his theories were so radical, it was seventeen years after his miraculous outpouring from the patent office before he was awarded the prize and she collected. Einstein''s life and work reflected the disruption of societal certainties and moral absolutes in the modernist atmosphere of the early twentieth century. Imaginative nonconformity was in the air: Picasso, Joyce, Freud, Stravinsky, Schoenberg, and others were breaking conventional bonds. Charging this atmosphere was a conception of the universe in which space and time and the properties of particles seemed based on the vagaries of observations. Einstein, however, was not truly a relativist, even though that is how he was interpreted by many, including some whose disdain was tinged by anti-Semitism. Beneath all of his theories, including relativity, was a quest for invariants, certainties, and absolutes. There was a harmonious reality underlying the laws of the universe, Einstein felt, and the goal of science was to discover it. His quest began in 1895, when as a 16-year-old he imagined what it would be like to ride alongside a light beam. A decade later came his miracle year, described in the letter above, which laid the foundations for the two great advances of twentieth-century physics: relativity and quantum theory. A decade after that, in 1915, he wrested from nature his crowning glory, one of the most beautiful theories in all of science, the general theory of relativity. As with the special theory, his thinking had evolved through thought experiments. Imagine being in an enclosed elevator accelerating up through space, he conjectured in one of them. The effects you''d feel would be indistinguishable from the experience of gravity. Gravity, he figured, was a warping of space and time, and he came up with the equations that describe how the dynamics of this curvature result from the interplay between matter, motion, and energy. It can be described by using another thought experiment. Picture what it would be like to roll a bowling ball onto the two-dimensional surface of a trampoline. Then roll some billiard balls. They move toward the bowling ball not because it exerts some mysterious attraction but because of the way it curves the trampoline fabric. Now imagine this happening in the four-dimensional fabric of space and time. Okay, it''s not easy, but that''s why we''re no Einstein and he was. The exact midpoint of his career came a decade after that, in 1925, and it was a turning point. The quantum revolution he had helped to launch was being transformed into a new mechanics that was based on uncertainties and probabilities. He made his last great contributions to quantum mechanics that year but, simultaneously, began to resist it. He would spend the next three decades, ending with some equations scribbled while on his deathbed in 1955, stubbornly criticizing what he regarded as the incompleteness of quantum mechanics while attempting to subsume it into a unified field theory. Both during his thirty years as a revolutionary and his subsequent thirty years as a resister, Einstein remained consistent in his willingness to be a serenely amused loner who was comfortable not conforming. Independent in his thinking, he was driven by an imagination that broke from the confines of conventional wisdom. He was that odd breed, a reverential rebel, and he was guided by a faith, which he wore lightly and with a twinkle in his eye, in a God who would not play dice by allowing things to happen by chance. Einstein''s nonconformist streak was evident in his personality and politics as well. Although he subscribed to socialist ideals, he was too much of an individualist to be comfortable with excessive state control or centralized authority. His impudent instincts, which served him so well as a young scientist, made him allergic to nationalism, militarism, and anything that smacked of a herd mentality. And until Hitler caused him to revise his geopolitical equations, he was an instinctive pacifist who celebrated resistance to war. His tale encompasses the vast sweep of modern science, from the infinitesimal to the infinite, from the emission of photons to the expansion of the cosmos. A century after his great triumphs, we are still living in Einstein''s universe, one defined on the macro scale by his theory of relativity and on the micro scale by a quantum mechanics that has proven durable even as it remains disconcerting. His fingerprints are all over today''s technologies. Photoelectric cells and lasers, nuclear power and fiber optics, space travel, and even semiconductors all trace back to his theories. He signed the letter to Franklin Roosevelt warning that it may be possible to build an atom bomb, and the letters of his famed equation relating energy to mass hover in our minds when we picture the resulting mushroom cloud. Einstein''s launch into fame, which occurred when measurements made during a 1919 eclipse confirmed his prediction of how much gravity bends light, coincided with, and contributed to, the birth of a new celebrity age. He became a scientific supernova and humanist icon, one of the most famous faces on the planet. The public earnestly puzzled over his theories, elevated him into a cult of genius, and canonized him as a secular saint. If he did not have that electrified halo of hair and those piercing eyes, would he still have become science''s preeminent poster boy? Suppose, as a thought experiment, that he had looked like a Max Planck or a Niels Bohr. Would he have remained in their reputational orbit, that of a mere scientific genius? Or would he still have made the leap into the pantheon inhabited by Aristotle, Galileo, and Newton? The latter, I believe, is the case. His work had a very personal character, a stamp that made it recognizably his, the way a Picasso is recognizably a Picasso. He made imaginative leaps and discerned great principles through thought experiments rather than by methodical inductions based on experimental data. The theories that resulted were at times astonishing, mysterious, and counterintuitive, yet they contained notions that could capture the popular imagination: the relativity of space and time, E=mc2, the bending of light beams, and the warping of space. Adding to his aura was his simple humanity. His inner security was tempered by the humility that comes from being awed by nature. He could be detached and aloof from those close to him, but toward mankind in general he exuded a true kindness and gentle compassion. Yet for all of his popular appeal and surface accessibility, Einstein also came to symbolize the perception that modern physics was something that ordinary laymen could not comprehend, "the province of priest-like experts," in the words of Harvard professor Dudley Herschbach. It was not always thus. Galileo and Newton were both great geniuses, but their mechanical cause-and-effect explanation of the world was something that most thoughtful folks could grasp. In the eighteenth century of Benjamin Franklin and the nineteenth century of Thomas Edison, an educated person could feel some familiarity with science and even dabble in it as an amateur. A popular feel for scientific endeavors should, if possible, be restored given the needs of the twenty-first century. This does not mean that every literature major should take a watered-down physics course or that a corporate lawyer should stay abreast of quantum mechanics. Rather, it means that an appreciation for the methods of science is a useful asset for a responsible citizenry. What science teaches us, very significantly, is the correlation between factual evidence and general theories, something well illustrated in Einstein''s life. In addition, an appreciation for the glories of science is a joyful trait for a good society. It helps us remain in touch with that childlike ca-pacity for wonder, about such ordinary things as falling apples and elevators, that characterizes Einstein and other great theoretical physicists. That is why studying Einstein can be worthwhile. Science is inspiring and noble, and its pursuit an enchanting mission, as the sagas of its heroes remind us. Near the end of his life, Einstein was asked by the New York State Education Department what schools should emphasize. "In teaching history," he replied, "there should be extensive discussion of personalities who benefited mankind through independence of character and judgment." Einstein fits into that category. At a time when there is a new emphasis, in the face of global competition, on science and math education, we should also note the other part of Einstein''s answer. "Critical comments by students should be taken in a friendly spirit," he said. "Accumulation of material should not stifle the student''s independence." A society''s competitive advantage will come not from how well its schools teach the multiplication and periodic tables, but from how well they stimulate imagination and creativity. Therein lies the key, I think, to Einstein''s brilliance and the lessons of his life. As a young student he never did well with rote learning. And later, as a theorist, his success came not from the brute strength of his mental processing power but from his imagination and creativity. He could construct complex equations, but more important, he knew that math is the language nature uses to describe her wonders. So he could visualize how equations were reflected in realities -- how the electromagnetic field equations discovered by James Clerk Maxwell, for example, would manifest themselves to a boy riding alongside a light beam. As he once declared, "Imagination is more important than knowledge." That approach required him to embrace nonconformity. "Long live impudence!" he exulted to the lover who would later become his wife. "It is my guardian angel in this world." Many years later, when others thought that his reluctance to embrace quantum mechanics showed that he had lost his edge, he lamented, "To punish me for my contempt for authority, fate made me an authority myself." His success came from questioning conventional wisdom, challenging authority, and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals. Tyranny repulsed him, and he saw tolerance not simply as a sweet virtue but as a necessary condition for a creative society. "It is important to foster individuality," he said, "for only the individual can produce the new ideas." This outlook made Einstein a rebel with a reverence for the harmony of nature, one who had just the right blend of imagination and wisdom to transform our understanding of the universe. These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the twentieth century, when Einstein helped usher in the modern age. Copyright © 2007 by Walter Isaacson CHAPTER TWO CHILDHOOD 1879-1896 The Swabian He was slow in learning how to talk. "My parents were so worried," he later recalled, "that they consulted a doctor." Even after he had begun using words, sometime after the age of 2, he developed a quirk that prompted the family maid to dub him "der Depperte," the dopey one, and others in his family to label him as "almost backwards." Whenever he had something to say, he would try it out on himself, whispering it softly until it sounded good enough to pronounce aloud. "Every sentence he uttered," his worshipful younger sister recalled, "no matter how routine, he repeated to himself softly, moving his lips." It was all very worrying, she said. "He had such difficulty with language that those around him feared he would never learn." His slow development was combined with a cheeky rebelliousness toward authority, which led one schoolmaster to send him packing and another to amuse history by declaring that he would never amount to much. These traits made Albert Einstein the patron saint of distracted school kids everywhere. But they also helped to make him, or so he later surmised, the most creative scientific genius of modern times. His cocky contempt for authority led him to question received wisdom in ways that well-trained acolytes in the academy never contemplated. And as for his slow verbal development, he came to believe that it allowed him to observe with wonder the everyday phenomena that others took for granted. "When I ask myself how it happened that I in particular discovered the relativity theory, it seemed to lie in the following circumstance," Einstein once explained. "The ordinary adult never bothers his head about the problems of space and time. These are things he has thought of as a child. But I developed so slowly that I began to wonder about space and time only when I was already grown up. Consequently, I probed more deeply into the problem than an ordinary child would have." Einstein''s developmental problems have probably been exaggerated, perhaps even by himself, for we have some letters from his adoring grandparents saying that he was just as clever and endearing as every grandchild is. But throughout his life, Einstein had a mild form of echolalia, causing him to repeat phrases to himself, two or three times, especially if they amused him. And he generally preferred to think in pictures, most notably in famous thought experiments, such as imagining watching lightning strikes from a moving train or experiencing gravity while inside a falling elevator. "I very rarely think in words at all," he later told a psychologist. "A thought comes, and I may try to express it in words afterwards." Einstein was descended, on both parents'' sides, from Jewish tradesmen and peddlers who had, for at least two centuries, made modest livings in the rural villages of Swabia in southwestern Germany. With each generation they had become, or at least so they thought, increasingly assimilated into the German culture that they loved. Although Jewish by cultural designation and kindred instinct, they displayed scant interest in the religion or its rituals. Einstein regularly dismissed the role that his heritage played in shaping who he became. "Exploration of my ancestors," he told a friend late in life, "leads nowhere." That''s not fully true. He was blessed by being born into an independent-minded and intelligent family line that valued education, and his life was certainly affected, in ways both beautiful and tragic, by membership in a religious heritage that had a distinctive intellectual tradition and a history of being both outsiders and wanderers. Of course, the fact that he happened to be Jewish in Germany in the early twentieth century made him more of an outsider, and more of a wanderer, than he would have preferred -- but that, too, became integral to who he was and the role he would play in world history. Einstein''s father, Hermann, was born in 1847 in the Swabian village of Buchau, whose thriving Jewish community was just beginning to enjoy the right to practice any vocation. Hermann showed "a marked inclination for mathematics," and his family was able to send him seventy-five miles north to Stuttgart for high school. But they could not afford to send him to a university, most of which were closed to Jews in any event, so he returned home to Buchau to go into trade. A few years later, as part of the general migration of rural German Jews into industrial centers during the late nineteenth century, Hermann and his parents moved thirty-five miles away to the more prosperous town of Ulm, which prophetically boasted as its motto "Ulmenses sunt mathematici," the people of Ulm are mathematicians. There he became a partner in a cousin''s featherbed company. He was "exceedingly friendly, mild and wise," his son would recall. With a gentleness that blurred into docility, Hermann was to prove inept as a businessman and forever impractical in financial matters. But his docility did make him well suited to be a genial family man and good husband to a strong-willed woman. At age 29, he married Pauline Koch, eleven years his junior. Pauline''s father, Julius Koch, had built a considerable fortune as a grain dealer and purveyor to the royal Württemberg court. Pauline inherited his practicality, but she leavened his dour disposition with a teasing wit edged with sarcasm and a laugh that could be both infectious and wounding (traits she would pass on to her son). From all accounts, the match between Hermann and Pauline was a happy one, with her strong personality meshing "in complete harmony" with her husband''s passivity. Their first child was born at 11:30 a.m. on Friday, March 14, 1879, in Ulm, which had recently joined, along with the rest of Swabia, the new German Reich. Initially, Pauline and Hermann had planned to name the boy Abraham, after his paternal grandfather. But they came to feel, he later said, that the name sounded "too Jewish." So they kept the initial A and named him Albert Einstein. Munich In 1880, just a year after Albert''s birth, Hermann''s featherbed business foundered and he was persuaded to move to Munich by his brother Jakob, who had opened a gas and electrical supply company there. Jakob, the youngest of five siblings, had been able to get a higher education, unlike Hermann, and he had qualified as an engineer. As they competed for contracts to provide generators and electrical lighting to municipalities in southern Germany, Jakob was in charge of the technical side while Hermann provided a modicum of salesmanship skills plus, perhaps more important, loans from his wife''s side of the family. Pauline and Hermann had a second and final child, a daughter, in November 1881, who was named Maria but throughout her life used instead the diminutive Maja. When Albert was shown his new sister for the first time, he was led to believe that she was like a wonderful toy that he would enjoy. His response was to look at her and exclaim, "Yes, but where are the wheels?" It may not have been the most perceptive of questions, but it did show that during his third year his language challenges did not prevent him from making some memorable comments. Despite a few childhood squabbles, Maja was to become her brother''s most intimate soul mate. The Einsteins settled into a comfortable home with mature trees and an elegant garden in a Munich suburb for what was to be, at least through most of Albert''s childhood, a respectable bourgeois existence. Munich had been architecturally burnished by mad King Ludwig II (1845-1886) and boasted a profusion of churches, art galleries, and concert halls that favored the works of resident Richard Wagner. In 1882, just after the Einsteins arrived, the city had about 300,000 residents, 85 percent of them Catholics and 2 percent of them Jewish, and it was the host of the first German electricity exhibition, at which electric lights were introduced to the city streets. Einstein''s back garden was often bustling with cousins and children. But he shied from their boisterous games and instead "occupied himself with quieter things." One governess nicknamed him "Father Bore." He was generally a loner, a tendency he claimed to cherish throughout his life, although his was a special sort of detachment that was interwoven with a relish for camaraderie and intellectual companionship. "From the very beginning he was inclined to separate himself from children his own age and to engage in daydreaming and meditative musing," according to Philipp Frank, a longtime scientific colleague. He liked to work on puzzles, erect complex structures with his toy building set, play with a steam engine that his uncle gave him, and build houses of cards. According to Maja, Einstein was able to construct card structures as high as fourteen stories. Even discounting the recollections of a star-struck younger sister, there was probably a lot of truth to her claim that "persistence and tenacity were obviously already part of his character." He was also, at least as a young child, prone to temper tantrums. "At such moments his face would turn completely yellow, the tip of his nose snow-white, and he was no longer in control of himself," Maja remembers. Once, at age 5, he grabbed

Table of Contents



Main Characters


The Light-Beam Rider


Childhood, 1879-1896


The Zurich Polytechnic, 1896-1900


The Lovers, 1900-1904


The Miracle Year: Quanta and Molecules, 1905


Special Relativity, 1905


The Happiest Thought, 1906-1909


The Wandering Professor, 1909-1914


General Relativity, 1911-1915


Divorce, 1916-1919


Einstein''s Universe, 1916-1919


Fame, 1919


The Wandering Zionist, 1920-1921


Nobel Laureate, 1921-1927


Unified Field Theories, 1923-1931


Turning Fifty, 1929-1931


Einstein''s God


The Refugee, 1932-1933


America, 1933-1939


Quantum Entanglement, 1935


The Bomb, 1939-1945


One-Worlder, 1945-1948


Landmark, 1948-1953


Red Scare, 1951-1954


The End, 1955


Einstein''s Brain and Einstein''s Mind




Editorial Reviews

“This is a biography that happens to be treatise on creativity. I was about to say scientific creativity, but I think I mean creativity itself. It shows us the creative exuberance of a man with an extraordinary visual imagination, able to recast certain problems in surprising ways.”