Additive Number Theory: Inverse Problems and the Geometry of Sumsets

Hardcover | August 22, 1996

byMelvyn B. Nathanson

not yet rated|write a review
Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.

Pricing and Purchase Info

$99.07 online
$110.50 list price (save 10%)
In stock online
Ships free on orders over $25

From Our Editors

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h(actual symbol not reproducible)2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse problem, one starts with a sumset hA and ...

From the Publisher

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the s...

From the Jacket

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h(actual symbol not reproducible)2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse problem, one starts with a sumset hA and ...

Format:HardcoverDimensions:310 pages, 9.25 × 6.1 × 0 inPublished:August 22, 1996Publisher:Springer

The following ISBNs are associated with this title:

ISBN - 10:0387946551

ISBN - 13:9780387946559

Look for similar items by category:

Customer Reviews of Additive Number Theory: Inverse Problems and the Geometry of Sumsets

Reviews

Extra Content

From Our Editors

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h(actual symbol not reproducible)2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse problem, one starts with a sumset hA and attempts to describe the structure of the underlying set A. In recent years, there has been remarkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plunnecke, Vospel and others. This volume includes their results and culminates with an elegant proof by Rusza of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression. Inverse problems are a central topic in additive number theory. This graduate text gives a comprehensive and self-contained account of this subject. In particular, it contains complete proofs of results from exterior alg