Algebra und Diskrete Mathematik für Informatiker by Klaus DeneckeAlgebra und Diskrete Mathematik für Informatiker by Klaus Denecke

Algebra und Diskrete Mathematik für Informatiker

byKlaus Denecke

Paperback | April 29, 2003 | German

Pricing and Purchase Info

$64.95

Earn 325 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

Die Themen aus Algebra und Diskreter Mathematik, die Informatiker in erster Linie benötigen, finden sich in dieser leicht verständlichen Einführung. Mathematik wird Studienanfängern als elementares Werkzeug zur Darstellung, Beschreibung, Abstraktion und Symbolisierung vermittelt. Die Bedeutung algebraischer Strukturen in der Kodierungstheorie, in der Automatentheorie und in der Theorie Formaler Sprachen wird in besonderem Maße verdeutlicht. Das Buch enthält zahlreiche Beispiele und Übungsaufgaben mit kompletten Lösungen.
Prof. Dr. Klaus Denecke, Universität Potsdam
Loading
Title:Algebra und Diskrete Mathematik für InformatikerFormat:PaperbackPublished:April 29, 2003Publisher:Vieweg+Teubner VerlagLanguage:German

The following ISBNs are associated with this title:

ISBN - 10:3519027496

ISBN - 13:9783519027492

Look for similar items by category:

Reviews

Table of Contents

1 Grundbegriffe.- 1.1 Zahlenbereiche.- 1.2 Grundbegriffe der Aussagenlogik.- 1.3 Quantifizierte Aussagen.- 1.4 Grundbegriffe der Mengenlehre.- 1.5 Relationen.- 1.6 Funktionen.- 1.7 Aufgaben.- 2 Elemente der Kombinatorik.- 2.1 Permutationen und ihre Verkettung.- 2.2 Variationen von Elementen einer Menge.- 2.3 Kombinationen, binomischer Satz.- 2.4 Aufgaben.- 3 Algebraische Strukturen.- 3.1 Strukturen mit einer binären Operation.- 3.2 Permutationsgruppen.- 3.3 Strukturen mit zwei binären Operationen.- 3.4 Restklassenringe und -körper.- 3.5 Polynomringe.- 3.6 Boolesche Algebren und Verbände.- 3.7 Aufgaben.- 4 Graphentheorie.- 4.1 Grundbegriffe der Graphentheorie.- 4.2 Eulersche und Hamiltonsche Graphen.- 4.3 Bäume und Wälder.- 4.4 Planare Graphen.- 4.5 Färbungen von Graphen.- 4.6 Gruppen und Graphen.- 4.7 Aufgaben.- 5 Lineare Algebra.- 5.1 Lineare Gleichungssysteme.- 5.2 Vektorräume.- 5.3 Matrizen und Determinanten.- 5.4 Hauptsätze für lineare Gleichungssysteme.- 5.5 Geometrische Anwendungen.- 5.6 Vektorräume mit Skalarprodukt.- 5.7 Lineare Abbildungen.- 5.8 Anwendung linearer Abbildungen.- 5.9 Eigenwerte symmetrischer Matrizen.- 5.10 Aufgaben.- 6 Universelle Algebra.- 6.1 Operationen in einer Menge, Algebren.- 6.2 Beispiele.- 6.3 Unteralgebren, Erzeugung.- 6.4 Kongruenzrelationen und Faktoralgebren.- 6.5 Aufgaben.- 7 Homomorphie.- 7.1 Homomorphiesatz.- 7.2 Isomorphiesätze.- 7.3 Aufgaben.- 8 Produkte von Algebren.- 8.1 Direkte Produkte.- 8.2 Subdirekte Produkte.- 8.3 Aufgaben.- 9 Terme und Bäume.- 9.1 Terme und Bäume.- 9.2 Termoperationen.- 9.3 Polynome und Polynomoperationen.- 9.4 Aufgaben.- 10 Identitäten und Varietäten.- 10.1 Die Galoisverbindung (Id, Mod).- 10.2 Vollinvariante Kongruenzrelationen.- 10.3 Die algebraische Folgerungsrelation.- 10.4 Relativ freie Algebren.- 10.5 Varietäten.- 10.6 Der Verband aller Varietäten.- 10.7 Aufgaben.- 11 Anwendungen.- 11.1 Algebren und Automaten.- 11.2 Lateinische Quadrate.- 11.3 Fehlerkorrigierende Codes.- 11.4 Formale Begriffsanalyse.- 11.5 Aufgaben.- Lösung der Aufgaben.