Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings by Shai Ben DavidAlgorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings by Shai Ben David

Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5…

byShai Ben DavidEditorJohn Case, Akira Maruoka

Paperback | September 23, 2004

Pricing and Purchase Info

$159.25 online 
$191.95 list price save 17%
Earn 796 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the ?eld, placing each of these topics in the general context of the ?eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A ?rst dichotomy is between viewing learning as an inde?nite process and viewing it as a ?nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion.
Title:Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5…Format:PaperbackDimensions:514 pages, 23.5 × 15.5 × 0.1 inPublished:September 23, 2004Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3540233563

ISBN - 13:9783540233565

Look for similar items by category:

Reviews

Table of Contents

Invited Papers.- String Pattern Discovery.- Applications of Regularized Least Squares to Classification Problems.- Probabilistic Inductive Logic Programming.- Hidden Markov Modelling Techniques for Haplotype Analysis.- Learning, Logic, and Probability: A Unified View.- Regular Contributions.- Learning Languages from Positive Data and Negative Counterexamples.- Inductive Inference of Term Rewriting Systems from Positive Data.- On the Data Consumption Benefits of Accepting Increased Uncertainty.- Comparison of Query Learning and Gold-Style Learning in Dependence of the Hypothesis Space.- Learning r-of-k Functions by Boosting.- Boosting Based on Divide and Merge.- Learning Boolean Functions in AC 0 on Attribute and Classification Noise.- Decision Trees: More Theoretical Justification for Practical Algorithms.- Application of Classical Nonparametric Predictors to Learning Conditionally I.I.D. Data.- Complexity of Pattern Classes and Lipschitz Property.- On Kernels, Margins, and Low-Dimensional Mappings.- Estimation of the Data Region Using Extreme-Value Distributions.- Maximum Entropy Principle in Non-ordered Setting.- Universal Convergence of Semimeasures on Individual Random Sequences.- A Criterion for the Existence of Predictive Complexity for Binary Games.- Full Information Game with Gains and Losses.- Prediction with Expert Advice by Following the Perturbed Leader for General Weights.- On the Convergence Speed of MDL Predictions for Bernoulli Sequences.- Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm.- On the Complexity of Working Set Selection.- Convergence of a Generalized Gradient Selection Approach for the Decomposition Method.- Newton Diagram and Stochastic Complexity in Mixture of Binomial Distributions.- Learnability of Relatively Quantified Generalized Formulas.- Learning Languages Generated by Elementary Formal Systems and Its Application to SH Languages.- New Revision Algorithms.- The Subsumption Lattice and Query Learning.- Learning of Ordered Tree Languages with Height-Bounded Variables Using Queries.- Learning Tree Languages from Positive Examples and Membership Queries.- Learning Content Sequencing in an Educational Environment According to Student Needs.- Tutorial Papers.- Statistical Learning in Digital Wireless Communications.- A BP-Based Algorithm for Performing Bayesian Inference in Large Perceptron-Type Networks.- Approximate Inference in Probabilistic Models.