Analisi Matematica II: Teoria ed esercizi by Claudio CanutoAnalisi Matematica II: Teoria ed esercizi by Claudio Canuto

Analisi Matematica II: Teoria ed esercizi

byClaudio Canuto, Anita Tabacco

Paperback | October 13, 2014 | Italian

Pricing and Purchase Info

$64.95

Earn 325 plum® points

Prices and offers may vary in store

Out of stock online

Not available in stores

about

Il presente testo intende essere di supporto ad un secondo insegnamento di Analisi Matematica in quei corsi di studio (quali ad esempio Ingegneria, Informatica, Fisica) in cui lo strumento matematico parte significativa della formazione dell'allievo.

I concetti e i metodi fondamentali del calcolo differenziale ed integrale in più variabili, le serie di funzioni e le equazioni differenziali ordinarie sono presentati con l'obiettivo primario di addestrare lo studente ad un loro uso operativo, ma critico. L'impostazione didattica dell'opera ricalca quella usata nel testo parallelo di Analisi Matematica I. La modalità di presentazione degli argomenti ne permette un uso flessibile e modulare. Lo stile adottato privilegia la chiarezza e la linearità dell'esposizione. Il testo organizzato su due livelli di lettura. Uno, più essenziale, permette allo studente di cogliere i concetti indispensabili della materia, di familiarizzarsi con le relative tecniche di calcolo e di trovare le giustificazioni dei principali risultati. L'altro, più approfondito e basato anche sullo studio del materiale presentato nelle appendici, permette all'allievo maggiormente motivato ed interessato di arricchire la sua preparazione. Numerosi esempi corredano e illustrano le definizioni e le proprietà di volta in volta enunciate. Viene fornito un cospicuo numero di esercizi, tutti con la relativa soluzione. Per oltre la metà di essi si delinea in modo completo il procedimento risolutivo.

Questa nuova edizione si presenta arricchita di contenuti rispetto alla precedente in modo da rispondere alle diverse possibili scelte didattiche nell'organizzazione di un secondo corso di Analisi Matematica.

Il presente testo intende essere di supporto ad un secondo insegnamento di Analisi Matematica in quei corsi di studio (quali ad esempio Ingegneria, Informatica, Fisica) in cui lo strumento matematico parte significativa della formazione dell'allievo.

I concetti e i metodi fondamentali del calcolo differenziale ed integrale in più variabili, le serie di funzioni e le equazioni differenziali ordinarie sono presentati con l'obiettivo primario di addestrare lo studente ad un loro uso operativo, ma critico. L'impostazione didattica dell'opera ricalca quella usata nel testo parallelo di Analisi Matematica I. La modalità di presentazione degli argomenti ne permette un uso flessibile e modulare. Lo stile adottato privilegia la chiarezza e la linearità dell'esposizione. Il testo organizzato su due livelli di lettura. Uno, più essenziale, permette allo studente di cogliere i concetti indispensabili della materia, di familiarizzarsi con le relative tecniche di calcolo e di trovare le giustificazioni dei principali risultati. L'altro, più approfondito e basato anche sullo studio del materiale presentato nelle appendici, permette all'allievo maggiormente motivato ed interessato di arricchire la sua preparazione. Numerosi esempi corredano e illustrano le definizioni e le proprietà di volta in volta enunciate. Viene fornito un cospicuo numero di esercizi, tutti con la relativa soluzione. Per oltre la metà di essi si delinea in modo completo il procedimento risolutivo.

Questa nuova edizione si presenta arricchita di contenuti rispetto alla precedente in modo da rispondere alle diverse possibili scelte didattiche nell'organizzazione di un secondo corso di Analisi Matematica.

Il presente testo intende essere di supporto ad un secondo insegnamento di Analisi Matematica in quei corsi di studio (quali ad esempio Ingegneria, Informatica, Fisica) in cui lo strumento matematico parte significativa della formazione dell'allievo.

I concetti e i metodi fondamentali del calcolo differenziale ed integrale in più variabili, le serie di funzioni e le equazioni differenziali ordinarie sono presentati con l'obiettivo primario di addestrare lo studente ad un loro uso operativo, ma critico. L'impostazione didattica dell'opera ricalca quella usata nel testo parallelo di Analisi Matematica I. La modalità di presentazione degli argomenti ne permette un uso flessibile e modulare. Lo stile adottato privilegia la chiarezza e la linearità dell'esposizione. Il testo organizzato su due livelli di lettura. Uno, più essenziale, permette allo studente di cogliere i concetti indispensabili della materia, di familiarizzarsi con le relative tecniche di calcolo e di trovare le giustificazioni dei principali risultati. L'altro, più approfondito e basato anche sullo studio del materiale presentato nelle appendici, permette all'allievo maggiormente motivato ed interessato di arricchire la sua preparazione. Numerosi esempi corredano e illustrano le definizioni e le proprietà di volta in volta enunciate. Viene fornito un cospicuo numero di esercizi, tutti con la relativa soluzione. Per oltre la metà di essi si delinea in modo completo il procedimento risolutivo.

Questa nuova edizione si presenta arricchita di contenuti rispetto alla precedente in modo da rispondere alle diverse possibili scelte didattiche nell'organizzazione di un secondo corso di Analisi Matematica.

Il presente testo intende essere di supporto ad un secondo insegnamento di Analisi Matematica in quei corsi di studio (quali ad esempio Ingegneria, Informatica, Fisica) in cui lo strumento matematico parte significativa della formazione dell'allievo.

I concetti e i metodi fondamentali del calcolo differenziale ed integrale in più variabili, le serie di funzioni e le equazioni differenziali ordinarie sono presentati con l'obiettivo primario di addestrare lo studente ad un loro uso operativo, ma critico. L'impostazione didattica dell'opera ricalca quella usata nel testo parallelo di Analisi Matematica I. La modalità di presentazione degli argomenti ne permette un uso flessibile e modulare. Lo stile adottato privilegia la chiarezza e la linearità dell'esposizione. Il testo organizzato su due livelli di lettura. Uno, più essenziale, permette allo studente di cogliere i concetti indispensabili della materia, di familiarizzarsi con le relative tecniche di calcolo e di trovare le giustificazioni dei principali risultati. L'altro, più approfondito e basato anche sullo studio del materiale presentato nelle appendici, permette all'allievo maggiormente motivato ed interessato di arricchire la sua preparazione. Numerosi esempi corredano e illustrano le definizioni e le proprietà di volta in volta enunciate. Viene fornito un cospicuo numero di esercizi, tutti con la relativa soluzione. Per oltre la metà di essi si delinea in modo completo il procedimento risolutivo.

Questa nuova edizione si presenta arricchita di contenuti rispetto alla precedente in modo da rispondere alle diverse possibili scelte didattiche nell'organizzazione di un secondo corso di Analisi Matematica.

Title:Analisi Matematica II: Teoria ed eserciziFormat:PaperbackPublished:October 13, 2014Publisher:Springer MilanLanguage:Italian

The following ISBNs are associated with this title:

ISBN - 10:8847057280

ISBN - 13:9788847057289

Reviews

Table of Contents

1 Serie numeriche.- 2 Serie di funzioni e di potenze.- 3 Serie di Fourier.- 4 Funzioni tra spazi euclidei.- 5 Calcolo differenziale per funzioni scalari.- 6 Calcolo differenziale per funzioni vettoriali.- 7 Applicazioni del calcolo differenziale.- 8 Calcolo integrale per funzioni in più variabili.- 9 Calcolo integrale su curve e superfici.- 10 Equazioni differenziali ordinarie.

Editorial Reviews

From the book reviews:"This is a second edition of a textbook covering the usual topics of a second course of calculus . . this second one presents gradually the subject and contains many examples, counterexamples and exercises. The attractive graphics and the online complements help students in learning analysis. The book will be very useful for anyone who studies a second course in calculus." (Ioan Rasa, zbMATH, Vol. 1303, 2015)