Applied Multivariate Statistical Analysis by Richard A. JohnsonApplied Multivariate Statistical Analysis by Richard A. Johnson

Applied Multivariate Statistical Analysis

byRichard A. Johnson, Dean W. Wichern

Hardcover | March 23, 2007

Pricing and Purchase Info


Earn 1,020 plum® points

Prices and offers may vary in store


Ships within 1-2 weeks

Ships free on orders over $25

Not available in stores


  This market leader offers a readable introduction to the statistical analysis of multivariate observations. Gives readers the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Starts with a formulation of the population models, delineates the corresponding sample results, and liberally illustrates everything with examples.  Offers an abundance of examples and exercises based on real data.  Appropriate for experimental scientists in a variety of disciplines.

Dean W. Wichern is Professor Emeritus at the Mays School of Business at Texas A&M University. He holds membership in the American Statistical Association, Royal Statistical Society, International Institute of Forecasters, and Institute for Operations Research and the Management Sciences. He is the author for four textbooks and was Ass...
Title:Applied Multivariate Statistical AnalysisFormat:HardcoverDimensions:800 pages, 9.3 × 7.2 × 1.3 inPublished:March 23, 2007Publisher:Pearson EducationLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0131877151

ISBN - 13:9780131877153

Look for similar items by category:


Table of Contents



(NOTE: Each chapter begins with an Introduction, and concludes with Exercises and References.)


1. Aspects of Multivariate Analysis.

Applications of Multivariate Techniques. The Organization of Data. Data Displays and Pictorial Representations. Distance. Final Comments.

2. Matrix Algebra and Random Vectors.

Some Basics of Matrix and Vector Algebra. Positive Definite Matrices. A Square-Root Matrix. Random Vectors and Matrices. Mean Vectors and Covariance Matrices. Matrix Inequalities and Maximization. Supplement 2A Vectors and Matrices: Basic Concepts.

3. Sample Geometry and Random Sampling.

The Geometry of the Sample. Random Samples and the Expected Values of the Sample Mean and Covariance Matrix. Generalized Variance. Sample Mean, Covariance, and Correlation as Matrix Operations. Sample Values of Linear Combinations of Variables.

4. The Multivariate Normal Distribution.

The Multivariate Normal Density and Its Properties. Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation. The Sampling Distribution of `X and S. Large-Sample Behavior of `X and S. Assessing the Assumption of Normality. Detecting Outliners and Data Cleaning. Transformations to Near Normality.


5. Inferences About a Mean Vector.

The Plausibility of …m0 as a Value for a Normal Population Mean. Hotelling's T 2 and Likelihood Ratio Tests. Confidence Regions and Simultaneous Comparisons of Component Means. Large Sample Inferences about a Population Mean Vector. Multivariate Quality Control Charts. Inferences about Mean Vectors When Some Observations Are Missing. Difficulties Due To Time Dependence in Multivariate Observations. Supplement 5A Simultaneous Confidence Intervals and Ellipses as Shadows of the p-Dimensional Ellipsoids.

6. Comparisons of Several Multivariate Means.

Paired Comparisons and a Repeated Measures Design. Comparing Mean Vectors from Two Populations. Comparison of Several Multivariate Population Means (One-Way MANOVA). Simultaneous Confidence Intervals for Treatment Effects. Two-Way Multivariate Analysis of Variance. Profile Analysis. Repealed Measures, Designs, and Growth Curves. Perspectives and a Strategy for Analyzing Multivariate Models.

7. Multivariate Linear Regression Models.

The Classical Linear Regression Model. Least Squares Estimation. Inferences About the Regression Model. Inferences from the Estimated Regression Function. Model Checking and Other Aspects of Regression. Multivariate Multiple Regression. The Concept of Linear Regression. Comparing the Two Formulations of the Regression Model. Multiple Regression Models with Time Dependant Errors. Supplement 7A The Distribution of the Likelihood Ratio for the Multivariate Regression Model.


8. Principal Components.

Population Principal Components. Summarizing Sample Variation by Principal Components. Graphing the Principal Components. Large-Sample Inferences. Monitoring Quality with Principal Components. Supplement 8A The Geometry of the Sample Principal Component Approximation.

9. Factor Analysis and Inference for Structured Covariance Matrices.

The Orthogonal Factor Model. Methods of Estimation. Factor Rotation. Factor Scores. Perspectives and a Strategy for Factor Analysis. Structural Equation Models. Supplement 9A Some Computational Details for Maximum Likelihood Estimation.

10. Canonical Correlation Analysis

Canonical Variates and Canonical Correlations. Interpreting the Population Canonical Variables. The Sample Canonical Variates and Sample Canonical Correlations. Additional Sample Descriptive Measures. Large Sample Inferences.


11. Discrimination and Classification.

Separation and Classification for Two Populations. Classifications with Two Multivariate Normal Populations. Evaluating Classification Functions. Fisher's Discriminant Function…ñSeparation of Populations. Classification with Several Populations. Fisher's Method for Discriminating among Several Populations. Final Comments.

12. Clustering, Distance Methods and Ordination.

Similarity Measures. Hierarchical Clustering Methods. Nonhierarchical Clustering Methods. Multidimensional Scaling. Correspondence Analysis. Biplots for Viewing Sample Units and Variables. Procustes Analysis: A Method for Comparing Configurations.


Standard Normal Probabilities. Student's t-Distribution Percentage Points. …c2 Distribution Percentage Points. F-Distribution Percentage Points. F-Distribution Percentage Points (…a = .10). F-Distribution Percentage Points (…a = .05). F-Distribution Percentage Points (…a = .01).

Data Index.

Subject Index.