Applied Photometry, Radiometry, and Measurements of Optical Losses by Michael BukshtabApplied Photometry, Radiometry, and Measurements of Optical Losses by Michael Bukshtab

Applied Photometry, Radiometry, and Measurements of Optical Losses

byMichael Bukshtab

Paperback | February 24, 2014

Pricing and Purchase Info

$227.75 online 
$275.95 list price save 17%
Earn 1,139 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Applied Photometry, Radiometry, and Measurements of Optical Lossesreviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregated objects, and for determination of power and energy parameters of radiation and color properties of light.

Michael A Bukshtab received M.S. and Ph.D. degrees in "Optical Design and Spectroscopy" and in "Physical Optics" from The Technical University of Fine Mechanics & Optics and from The Vavilov' State Optical Institute, and had post-doctoral tenure analyzing high-purity silica glasses and specialty fibers in The Institute of Silicate Chem...
Title:Applied Photometry, Radiometry, and Measurements of Optical LossesFormat:PaperbackDimensions:712 pages, 23.5 × 15.5 × 0.17 inPublished:February 24, 2014Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9401785260

ISBN - 13:9789401785266

Look for similar items by category:


Table of Contents

Acknowledgements. Abstract. Preface.


Chapter 1 Radiometric and photometric quantities and notions. 1.1. Physical sense of radiometric conception. 1.2. Parameters of optical radiation. 1.3. Radiation interactions with material objects.

Chapter 2 Methods of photometric and radiometric measurements. 2.1. Evaluation of power and energy extents of optical radiation. 2.2. Analysis of attenuation factors. 2.3. Measurements of color coordinates and indices. 2.4. Photometry of integrating spheres.

Chapter 3 Radiometry of partially coherent radiation. 3.1. Coherence and radiative transfer. 3.2. Laser and pulsed light. 3.3. Interference phenomena and optical measurements. 3.4. Diffraction corrections and gratings in radiometry and photometry.

Chapter 4 Photometers and radiometers. 4.1. Optical design and absolute calibration of radiometers. 4.2. Attenuation and color photometers and spectrophotometers. 4.3. Photometric accuracy and verification of linearity.

PART II MEASUREMENTS OF OPTICAL LOSSES . II.1. Features of low-loss assessments.

Chapter 5 Conventional measurement techniques. 5.1. Internal transmittance and attenuation coefficient. 5.2. Specular reflectance. 5.3. Scattering factor.

Chapter 6 Systems of multiple reflections. 6.1. Flat-mirror and prism reflector cells. 6.2. Multipass cavities. 6.3. Mirror waveguides. 6.4. Multiplication of Raman scattering. 6.5. Interference-fringe reduction in multipass and derivative spectroscopy.

Chapter 7 Laser spectroscopy. 7.1. Active intracavity measurements. 7.2. Comparison of intracavity methods. 7.3. Intracavity and ringdown spectroscopy.

Chapter 8 Measurements in passive resonators. 8.1. Pulse-separation techniques. 8.2. Interferometric analysis. 8.3. Resonant phase-shift and decay-time studies. 8.4. Quality-factor transfer method and asymmetric-cavity measurements. 8.5. Evaluation of loss-dichroism and phase-dispersion.

Chapter 9 Determination of absorption losses. 9.1. Laser calorimetry. 9.2. Thermal-lensing, photothermal, and photoacoustic techniques. 9.3. Emissive spectroscopy. 9.4. Integrating spheres as multiple-reflection cavities.

Chapter 10 Direct attenuation measurements. 10.1. Differential, ratio, and single-channel systems. 10.2. Derivative spectroscopy. 10.3. Wavelength tuning and balanced detection. 10.4. Separation of bulk and surface losses. 10.5. Reflection spectrophotometry.

Chapter 11 Propagation losses in fibers and waveguides. 11.1. Measurements of internal optical attenuation for guided light. 11.2. Analysis of return losses via backscattered radiation. 11.3. Partition of distributed losses and attenuation factors in reflected light. 11.4. Interference noise and crosstalk in fiber transmission systems.