Basic Technical Mathematics With Calculus Plus Mymathlab With Pearson Etext -- Access Card Package by Allyn J. Washington

Basic Technical Mathematics With Calculus Plus Mymathlab With Pearson Etext -- Access Card Package

byAllyn J. Washington, Richard Evans

Book & Toy | January 23, 2017

not yet rated|write a review

Pricing and Purchase Info

$339.10

Earn 1696 plum® points

Out of stock online

Not available in stores

about

NOTE: Before purchasing, check with your instructor to ensure you select the correct ISBN. Several versions of Pearson's MyLab™ products exist for each title, and registrations are not transferable. To register for and use Pearson's MyLab products, you may also need a Course ID, which your instructor will provide.


Used books, rentals, and purchases made outside of Pearson

If purchasing or renting from companies other than Pearson, the access codes for Pearson's MyLab products may not be included, may be incorrect, or may be previously redeemed. Check with the seller before completing your purchase.


For courses in technical and pre-engineering technical programs or other programs for which coverage of basic mathematics is required.

This package includes MyLab Math.


The best-seller in technical mathematics gets an “Oh, wow!” update

The 11th Edition of Basic Technical Mathematics with Calculus is a bold revision of this classic bestseller. The text now sports an engaging full-color design, and new co-author Rich Evans has introduced a wealth of relevant applications and improvements, many based on user feedback. The text is supported by an all-new online graphing calculator manual, accessible at point-of-use via short URLs. The new edition continues to feature a vast number of applications from technical and pre-engineering fields—including computer design, electronics, solar energy, lasers fiber optics, and the environment—and aims to develop your understanding of mathematical methods without simply providing a collection of formulas. The authors start the text by establishing a solid background in algebra and trigonometry, recognizing the importance of these topics for success in solving applied problems.


Personalize learning with MyLab Math.

MyLab™ Math is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. The MyLab Math course features hundreds of new algorithmic exercises, tutorial videos, and PowerPoint slides.


0134469658 / 9780134469652 Basic Technical Mathematics with Calculus plus MyLab Math with Pearson eText -- Access Card Package

Package consists of:

  • 013443773X/9780134437736 Basic Technical Mathematics with Calculus

  • 0321431308 / 9780321431301 MyLab Math -- Glue-in Access Card

  • 0321654064 / 9780321654069 MyLab Math Inside Star Sticker

About The Author

Allyn J. Washington received his Masters Degree from Brown University, Providence, Rhode Island. Allyn taught mathematics at Trinity College, Hartford, Connecticut, after graduating Phi Beta Kappa from Trinity. He was Professor of Mathematics at Dutchess Community College, Poughkeepsie, New York, where he served as the Mathematics De...

Details & Specs

Title:Basic Technical Mathematics With Calculus Plus Mymathlab With Pearson Etext -- Access Card PackageFormat:Book & ToyDimensions:11.1 × 8.8 × 1.6 inPublished:January 23, 2017Publisher:Pearson EducationLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0134469658

ISBN - 13:9780134469652

Look for similar items by category:

Customer Reviews of Basic Technical Mathematics With Calculus Plus Mymathlab With Pearson Etext -- Access Card Package

Reviews

Extra Content

Table of Contents

1 Basic Algebraic Operations

1.1 Numbers

1.2 Fundamental Operations of Algebra

1.3 Calculators and Approximate Numbers

1.4 Exponents and Unit Conversions

1.5 Scientific Notation

1.6 Roots and Radicals

1.7 Addition and Subtraction of Algebraic Expressions

1.8 Multiplication of Algebraic Expressions

1.9 Division of Algebraic Expressions

1.10 Solving Equations

1.11 Formulas and Literal Equations

1.12 Applied Word Problems


2 Geometry

2.1 Lines and Angles

2.2 Triangles

2.3 Quadrilaterals

2.4 Circles

2.5 Measurement of Irregular Areas

2.6 Solid Geometric Figures


3 Functions and Graphs

3.1 Introduction to Functions

3.2 More about Functions

3.3 Rectangular Coordinates

3.4 The Graph of a Function

3.5 Graphs on the Graphing Calculator

3.6 Graphs of Functions Defined by Tables of Data

 

4 The Trigonometric Functions

4.1 Angles

4.2 Defining the Trigonometric Functions

4.3 Values of the Trigonometric Functions

4.4 The Right Triangle

4.5 Applications of Right Triangles

 

5 Systems of Linear Equations Determinants

5.1 Linear Equations and Graphs of Linear Functions

5.2 Systems of Equations and Graphical Solutions

5.3 Solving Systems of Two Linear Equations in Two Unknowns Algebraically

5.4 Solving Systems of Two Linear Equations in Two Unknowns by Determinants

5.5 Solving Systems of Three Linear Equations in Three Unknowns Algebraically

5.6 Solving Systems of Three Linear Equations in Three Unknowns by Determinants


6 Factoring and Fractions

6.1 Factoring: Greatest Common Factor and Difference of Squares

6.2 Factoring Trinomials

6.3 The Sum and Difference of Cubes

6.4 Equivalent Fractions

6.5 Multiplication and Division of Fractions

6.6 Addition and Subtraction of Fractions

6.7 Equations Involving Fractions


7 Quadratic Equations

7.1 Quadratic Equations; Solution by Factoring

7.2 Completing the Square

7.3 The Quadratic Formula

7.4 The Graph of the Quadratic Function


8 Trigonometric Functions of Any Angle

8.1 Signs of the Trigonometric Functions

8.2 Trigonometric Functions of Any Angle

8.3 Radians

8.4 Applications of Radian Measure


9 Vectors and Oblique Triangles

9.1 Introduction to Vectors

9.2 Components of Vectors

9.3 Vector Addition by Components

9.4 Applications of Vectors

9.5 Oblique Triangles, the Law of Sines

9.6 The Law of Cosines


10 Graphs of the Trigonometric Functions

10.1 Graphs of y = a sin x and y = a cos x

10.2 Graphs of y = a sin bx and y = a cos bx

10.3 Graphs of y = a sin (bx + c) and y = a cos (bx + c)

10.4 Graphs of y = tan x, y = cot x, y = sec x, y = csc x

10.5 Applications of the Trigonometric Graphs

10.6 Composite Trigonometric Curves


11 Exponents and Radicals

11.1 Simplifying Expressions with Integer Exponents

11.2 Fractional Exponents

11.3 Simplest Radical Form

11.4 Addition and Subtraction of Radicals

11.5 Multiplication and Division of Radicals


12 Complex Numbers

12.1 Basic Definitions

12.2 Basic Operations with Complex Numbers

12.3 Graphical Representation of Complex Numbers

12.4 Polar Form of a Complex Number

12.5 Exponential Form of a Complex Number

12.6 Products, Quotients, Powers, and Roots of Complex Numbers

12.7 An Application to Alternating-current (ac) Circuits


13 Exponential and Logarithmic Functions

13.1 Exponential Functions

13.2 Logarithmic Functions

13.3 Properties of Logarithms

13.4 Logarithms to the Base 10

13.5 Natural Logarithms

13.6 Exponential and Logarithmic Equations

13.7 Graphs on Logarithmic and Semilogarithmic Paper


14 Additional Types of Equations and Systems of Equations

14.1 Graphical Solution of Systems of Equations

14.2 Algebraic Solution of Systems of Equations

14.3 Equations in Quadratic Form

14.4 Equations with Radicals


15 Equations of Higher Degree

15.1 The Remainder and Factor Theorems; Synthetic Division

15.2 The Roots of an Equation

15.3 Rational and Irrational Roots


16 Matrices; Systems of Linear Equations

16.1 Matrices: Definitions and Basic Operations

16.2 Multiplication of Matrices

16.3 Finding the Inverse of a Matrix

16.4 Matrices and Linear Equations

16.5 Gaussian Elimination

16.6 Higher-order Determinants


17 Inequalities

17.1 Properties of Inequalities

17.2 Solving Linear Inequalities

17.3 Solving Nonlinear Inequalities

17.4 Inequalities Involving Absolute Values

17.5 Graphical Solution of Inequalities with Two Variables

17.6 Linear Programming


18 Variation

18.1 Ratio and Proportion

18.2 Variation


19 Sequences and the Binomial Theorem

19.1 Arithmetic Sequences

19.2 Geometric Sequences

19.3 Infinite Geometric Series

19.4 The Binomial Theorem

 

20 Additional Topics in Trigonometry

20.1 Fundamental Trigonometric Identities

20.2 The Sum and Difference Formulas

20.3 Double-Angle Formulas

20.4 Half-Angle Formulas

20.5 Solving Trigonometric Equations

20.6 The Inverse Trigonometric Functions


21 Plane Analytic Geometry

21.1 Basic Definitions

21.2 The Straight Line

21.3 The Circle

21.4 The Parabola

21.5 The Ellipse

21.6 The Hyperbola

21.7 Translation of Axes

21.8 The Second-degree Equation

21.9 Rotation of Axes

21.10 Polar Coordinates

21.11 Curves in Polar Coordinates


22 Introduction to Statistics

22.1 Graphical Displays of Data

22.2 Measures of Central Tendency

22.3 Standard Deviation

22.4 Normal Distributions

22.5 Statistical Process Control

22.6 Linear Regression

22.7 Nonlinear Regression


23 The Derivative

23.1 Limits                                                                          

23.2 The Slope of a Tangent to a Curve

23.3 The Derivative

23.4 The Derivative as an Instantaneous Rate of Change

23.5 Derivatives of Polynomials

23.6 Derivatives of Products and Quotients of Functions

23.7 The Derivative of a Power of a Function

23.8 Differentiation of Implicit Functions

23.9 Higher Derivatives

                                                               

24 Applications of the Derivative                                                            

24.1 Tangents and Normals

24.2 Newton’s Method for Solving Equations

24.3 Curvilinear Motion

24.4 Related Rates

24.5 Using Derivatives in Curve Sketching                                                                            

24.6 More on Curve Sketching

24.7 Applied Maximum and Minimum Problems

24.8 Differentials and Linear Approximations

 

25 Integration

25.1 Antiderivatives

25.2 The Indefinite Integral

25.3 The Area Under a Curve

25.4  The Definite Integral

25.5  Numerical Integration: The Trapezoidal Rule

25.6  Simpson's Rule

                                                                                               

26 Applications of Integration

26.1  Applications of the Indefinite Integral

26.2  Areas by Integration

26.3  Volumes by Integration

26.4  Centroids

26.5  Moments of Inertia

26.6  Other Applications                                                                                               

                                                                                                                                               

27 Differentiation of Transcendental Functions                                               

27.1  Derivatives of the Sine and Cosine Functions

27.2  Derivatives of the Other Trigonometric Functions

27.3  Derivatives of the Inverse Trigonometric Functions

27.4  Applications

27.5  Derivative of the Logarithmic Function

27.6  Derivative of the Exponential Function

27.7  L’Hospital’s Rule

27.8  Applications

                                                                               

28 Methods of Integration

28.1  The Power Rule for Integration

28.2  The Basic Logarithmic Form

28.3  The Exponential Form

28.4  Basic Trigonometric Forms

28.5  Other Trigonometric Forms

28.6  Inverse Trigonometric Forms

28.7  Integration by Parts

28.8  Integration by Trigonometric Substitution

28.9  Integration by Partial Fractions: Non-repeated Linear Factors

28.10  Integration by Partial Fractions: Other Cases

28.11  Integration by Use of Tables

                                                                               

29 Partial Derivatives and Double Integrals

29.1 Functions of Two Variables

29.2 Curves and Surfaces in Three Dimensions

29.3 Partial Derivatives

29.4 Double Integrals

                                                               

30 Expansion of Functions in Series

30.1 Infinite Series

30.2 Maclaurin Series

30.3 Operations with Series

30.4 Computations by Use of Series Expansions

30.5 Taylor Series

30.6 Introduction to Fourier Series

30.7 More About Fourier Series

                                                                                                                                               

31 Differential Equations

31.1 Solutions of Differential Equations                                                                 

31.2 Separation of Variables

31.3 Integrating Combinations

31.4 The Linear Differential Equation of the First Order

31.5 Numerical Solutions of First-order Equations

31.6 Elementary Applications

31.7 Higher-order Homogeneous Equations

31.8 Auxiliary Equation with Repeated or Complex Roots

31.9 Solutions of Nonhomogeneous Equations

31.10 Applications of Higher-order Equations

31.11 Laplace Transforms

31.12 Solving Differential Equations by Laplace Transforms

                                                                                               

Appendix A Solving Word Problems

Appendix B Units of Measurement

Appendix C Newton’s Method

Appendix D A Table of Integrals