Body Sensor Networks by M. YacoubBody Sensor Networks by M. Yacoub

Body Sensor Networks

Foreword byM. YacoubEditorGuang-Zhong Yang

Hardcover | May 15, 2006

Pricing and Purchase Info

$154.95

Earn 775 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

This book addresses the issues of the rapidly changing field of wireless wearable and implantable sensors. It also discusses the latest technological developments and clinical applications of body-sensor networks (BSN). BSN is a new area of research and the last decade has seen a rapid surge of interest. The book also provides a review of current wireless sensor development platforms and a guide to developing your own BSN applications.
Title:Body Sensor NetworksFormat:HardcoverDimensions:522 pages, 9.17 × 6.1 × 0 inPublished:May 15, 2006Publisher:Springer LondonLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:1846282721

ISBN - 13:9781846282720

Look for similar items by category:

Reviews

Table of Contents

1 Introduction 1 1.1 Wireless Sensor Networks 1 1.2 BSN and Healthcare 4 1.2.1 Monitoring Patients with Chronic Disease 6 1.2.2 Monitoring Hospital Patients 7 1.2.3 Monitoring Elderly Patients 9 1.3 Pervasive Patient Monitoring 10 1.4 Technical Challenges Facing BSN 13 1.4.1 Improved Sensor Design 13 1.4.2 Biocompatibility 14 1.4.3 Energy Supply and Demand 15 1.4.4 System Security and Reliability 16 1.4.5 Context Awareness 18 1.4.6 Integrated Therapeutic Systems 19 1.5 Personalised Healthcare 20 1.6 Finding the Ideal Architecture for BSN 22 1.7 The Future: Going from "Micro" to "Nano" 27 1.8 The Scope of the Book 30 References 34 2 Biosensor Design and Interfacing 41 2.1 Introduction 41 2.1.1 What is a Biosensor? 42 2.2 How Do Electrochemical Devices Work? 44 2.2.1 Potentiometric Devices 45 Body Sensor Networks 2.2.2 Amperometry and Voltammetry 53 2.3 Instrumentation 65 2.3.1 Potentiometry 65 2.3.2 Amperometry and Voltammetry 66 2.3.3 Reference and Counter Electrodes 68 2.4 Photoelectrochemistry and Spectroelectrochemistry 69 2.5 Biocompatibility 71 2.5.1 Sensor Fouling 71 2.5.2 Tissue Damage 73 2.6 Novel Approaches to Handling Sensor Data 73 2.7 Conclusions 80 Acknowledgements 82 References 82 3 Protein Engineering for Biosensors 89 3.1 Introduction 89 3.1.1 Electrochemical Sensors 90 3.1.2 Optical Sensors 91 3.1.3 Gravimetric Sensors 92 3.1.4 Consuming and Non-Consuming Biosensors 92 3.2 Protein Engineering 93 3.2.1 The Signal Transduction Module 95 3.2.2 The Recognition Site Module 97 3.2.3 Immobilisation Module 100 3.3 Biocompatibility and Implantation 102 3.4 Conclusions 109 References 109 4 Wireless Communication 117 4.1 Introduction 117 4.2 Inductive Coupling 1184.3 RF Communication in Body 119 4.4 Antenna Design 121 4.5 Antenna Testing 125 4.5.1 Antenna Impedance and Radiation Resistance Measurement 125 4.5.2 Quarter Wave Line Impedance Measurement 126 4.6 Matching Network 128 4.6.1 Transmitter Tuning 128 4.6.2 The L Network 130 4.6.3 The p Network 131 4.6.4 The T and p -L Networks 132 4.6.5 Parasitic Effects 133 Contents 4.6.6 Network Choice 134 4.6.7 Radio Frequency Losses in Components and Layout Issues 135 4.6.8 Receiver Tuning 135 4.6.9 Base Station Antennas 136 4.7 Propagation 136 4.8 Materials 137 4.9 Environment 138 4.10 External Transceiver (Base Station) 138 4.11 Power Considerations 139 4.11.1 Battery Challenges 140 4.12 Defibrillation Pulse 1414.13 Link Budget 142 4.14 Conclusions 142 References 143 5 Network Topologies, Communication Protocols and Standards 145 5.1 Network Topologies 145 5.2 Body Sensor Network Application Scenarios 148 5.2.1 Stand-Alone Body Sensor Networks 148 5.2.2 Global Healthcare Connectivity 149 5.2.3 Pervasive Sensor Networks 150 5.3 Wireless Personal Area Network Technologies 152 5.3.1 Overview 152 5.3.2 The Wireless Regulatory Environment 153 5.3.3 Wireless Communication Standards 155 5.3.4 IEEE 802.15.1: Medium-Rate Wireless Personal Area Networks 1555.3.5 IEEE P802.15.3: High-Rate Wireless Personal Area Networks 1585.3.6 IEEE 802.15.4: Low-Rate Wireless Personal Area Networks 160 5.3.7 ZigBee 164 5.3.8 Comparison of Technologies 168 5.4 Practical Experiences with IEEE 802.15.4 1695.5 Healthcare System Integration 174 5.5.1 ExistingInteroperability Standards 174 5.5.2 Wireless Interoperability Standards under Development 176 5.6 Conclusions 177 References 180 6 Energy Scavenging 183 6.1 Introduction 183 6.1.1 Sensor Node Power Requirements 1846.1.2 Batteries and Fuel Cells for Sensor Nodes 185Body Sensor Networks 6.1.3 Ambient Energy Sources 1866.2 Architectures for Inertial Energy Scavenging 187 6.2.1 Energy Extraction Mechanisms for Inertial Generators 187 6.2.2 Performance Limits 191 6.3 Fabrication and Testing 195 6.3.1 Device Fabrication and Structure 195 6.3.2 Device Testing 197 6.4 Module Design and Simulation 200 6.4.1 System Modelling 200 6.4.2 Integrated Simulation 204 6.5 Power Electronics and System Effectiveness 205 6.5.1 Power Electronics Requirements and Trade-offs 205 6.5.2 Semiconductor Device Design 209 6.5.3 Coherent Simulation 211 6.6 Discussion and Conclusions 213 6.6.1 What is Achievable in Body-Sensor Energy Scavenging? 213 6.6.2 Future Prospects and Trends 215 References 216 7 Towards Ultra-Low Power Bio-Inspired Processing 219 7.1 Introduction 219 7.2 Bio-Inspired Signal Processing 220 7.3 Analogue vs Digital Signal Processing 221 7.3.1 Quantised Data/Time vs Continuous Data/Time 221 7.3.2 Analogue/Digital Data Representation 222 7.3.3 Linear Operations 223 7.3.4 Non-Linear Operations 224 7.3.5 Hybrid System Organisation 224 7.4 CMOS-Based Biosensors 225 7.4.1 Ion-Sensitive Field-Effect Transistor (ISFET) 227 7.4.2 ISFET-Based Biosensors 229 7.4.3 Towards Biochemically-Inspired Processing with ISFETs 230 7.5 Applications of Ultra-Low Power Signal Processing for BSN 234 References 236 8 Multi-sensor Fusion 239 8.1 Introduction 239 8.1.1 Information Interaction of Sensor Fusion 240 8.1.2 Levels of Processing 242 8.2 Direct Data Fusion 242 8.2.1 Optimal Averaging for Sensor Arrays 243 8.2.2 Source Recovery 246 Contents8.3 Feature Level Data Fusion 252 8.3.1 Feature Detection 252 8.3.2 Distance Metrics 253 8.3.3 Instance Based Learning 254 8.3.4 Distance Based Clustering 255 8.4 Dimensionality Reduction 2588.4.1 Multidimensional Scaling (MDS) 259 8.4.2 Locally Linear Embedding (LLE) 260 8.4.3 Isometric Mapping (Isomap) 261 8.5 Feature Selection 262 8.5.1 Feature Relevance 264 8.5.2 Feature Relevance Based on ROC Analysis 266 8.5.3 Feature Selection Based on ROC Analysis 271 8.6 Decision Level Fusion 274 8.7 Conclusions 278 References 281 9 Context-Aware Sensing 287 9.1 Introduction 287 9.2 Application Scenarios 289 9.3 Preprocessing for Context Sensing 291 9.3.1 Information Granularity 291 9.3.2 Sources of Signal Variations 292 9.3.3 Data Normalisation 293 9.4 Context Recognition Techniques 294 9.4.1 Hidden Markov Models (HMMs) 294 9.4.2 Artificial Neural Networks (ANNs) 302 9.5 Spatio-Temporal Self Organising Maps (STSOMs) 306 9.5.1 The Basic Structure of the STSOM 307 9.5.2 The Use of Multi-Resolution for Improved Class Separation 312 9.5.3 STSOM Algorithm Design 315 9.5.4 STSOM for Context-Aware Sensing 320 9.6 Conclusions 323 References 326 10 Autonomic Sensing 333 10.1 Introduction 333 10.2 Autonomic Sensing 334 10.3 Fault Detection and Self-Healing 33610.3.1 Belief Networks 337 10.3.2 Belief Propagation through Message Passing 339 10.4 Routing and Self-Organisation 344 Body Sensor Networks 10.5 Security and Self-Protection 348 10.5.1 Bacterial Attacks 350 10.5.2 Virus Infection 356 10.5.3 Secured Protocols 358 10.5.4 Self-Protection 362 10.6 Conclusions 365 References 366 11 Wireless Sensor Microsystem Design: A Practical Perspective 373 11.1 Introduction 373 11.2 The Diagnostic Capsule 375 11.3 Applications for Wireless Capsule Devices 376 11.3.1 Human Medicine 376 11.3.2 Animal Applications 378 11.4 Technology 379 11.4.1 Design Constraints 379 11.4.2 Microsystem Design 379 11.4.3 Integrated Sensors 381 11.5 Electronics System Design 385 11.5.1 Analogue Electronic Front-End Acquisition Design 386 11.5.2 Digital System Design 386 11.6 The Wireless Environment 388 11.7 Power Sources 390 11.8 Packaging 391 11.9 Conclusion 392 References 393 12 Conclusions and Future Outlook 399 Appendix A Wireless Sensor Development Platforms 403 A.1 Introduction 403 A.2 System Architecture 403 A.2.1 Processor 404 A.2.2 Wireless Communication 407 A.2.3 Memory 410 A.2.4 Sensor Interface 411 A.2.5 Power Supply 414 A.2.6 Operating System 415 A.3 Conclusions 418 References 418 Contents vii Appendix B BSN Development Kit and Programming Guide 423 B.1 Introduction 423 B.2 BSN Architectural Design 423 B.2.1 Microcontroller 425 B.2.2 Radio Transceiver 428 B.2.3 Flash Memory 437 B.2.4 Board Connector 438 B.2.5 Antenna 440 B.3 BSN Development Kit 441 B.3.1 BSN Nodes 442 B.3.2 USB Programmer 442 B.3.3 Sensor Board 443 B.3.4 Battery Board 447 B.3.5 Prototype Board 449 B.4 TinyOS 451 B.4.1 nesC 452 B.4.2 Execution Model 458 B.4.3 Hardware Abstraction 460 B.4.4 TOSSIM 461 B.4.5 Deluge - TinyOS Network Programming 466 B.5 BSN Programming Guide 468 B.5.1 Programming Environment 468 B.5.2 Installation Instructions 469 B.5.3 BSN Node Programming 469 B.6 Conclusions 478 References 478 Index 481