CMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data Communications by Paul MullerCMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data Communications by Paul Muller

CMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data Communications

byPaul Muller

Paperback | November 23, 2010

Pricing and Purchase Info

$192.62 online 
$220.95 list price save 12%
Earn 963 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


The intention of this book is to address a number of timely, performance-critical issues within the field of short-distance optical communications, from a circuit designer's perspective. It discusses the major trade-offs the designer has to deal with in the development of monolithically integrated receivers in CMOS technologies. As such, it is based on Dr. Muller's doctoral dissertation entitled "A Standard CMOS Multi-Channel Single-Chip Receiver for Multi-Gigabit Optical Data Communications", subm- ted to the School of Engineering of the École Polytechnique Fédérale de Lausanne (EPFL) in May 2006. The dissertation material has been enhanced by the presentation of a number of alternative design approaches and circuit topologies, providing exhaustive coverage of the state of the art in optical sho- distance receiver circuit design. The need for a new processor input/output (I/O) interface paradigm is dictated by ongoing te- nology scaling and the advent of multi-core systems. Indeed, each new generation of microprocessors and digital signal processors provides higher computing power and data throughput, whereas the available bandwidth of the I/O interfaces is subject to much slower growth. Moving beyond - coming serial links to an optical data link paradigm for very short-distance (board-to-board and chip-- chip communications allows for considerable I/O interface bandwidth enhancement. Fully integrated silicon CMOS receivers are considered to be the technology of choice to lead this solution to economic success, because monolithic integration results in lower volume-manufacturing cost, improved yield and reduced assembly and test expenses.
Title:CMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data CommunicationsFormat:PaperbackDimensions:191 pages, 23.5 × 15.5 × 0.02 inPublished:November 23, 2010Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9048174732

ISBN - 13:9789048174737

Look for similar items by category:


Table of Contents

About the Authors. Foreword. Table of Contents. Constants, Symbols and Acronyms. CHAPTER 1 Introduction. CHAPTER 2 Integrated Photonic Systems. 2.1 Long-Haul Communication Links. 2.2 Metropolitan-Area Networks. 2.3 Local Area Networks and Short-Distance Interconnects. 2.4 Optical Backplane Technology. 2.5 Optical on-chip interconnects. CHAPTER 3 Basic Concepts. 3.1 Modulation of Optical and Electrical Signals. 3.2 NRZ Random Data. 3.3 Clock Recovery Basics. 3.4 Bit Error Rate. 3.5 System Bandwidth and Inter-Symbol Interference. 3.6 Amplitude Noise. 3.7 Jitter. 3.8 Multi-Channel Systems. 3.9 Definition of Transistor-Level Conventions. CHAPTER 4 System-Level Specifications. 4.1 Technology. 4.2 System-Level Requirements. 4.3 Receiver System Specifications. 4.4 Sub-Block Parameters. 4.5 Transimpedance Amplifier Analysis. 4.6 System Gain and Bandwidth Specifications. 4.7 Bit Error Rate Evaluation. 4.8 Block Specification Flow. CHAPTER 5 Pure Silicon Photodetector. 5.1 Photodetection. 5.2 PIN Photodiodes. 5.3 Avalanche Photodiodes. 5.4 Resonant Cavity Enhanced Detectors. 5.5 Conclusion. CHAPTER 6 Transimpedance Amplifier Design. 6.1 Principles of I-V Conversion. 6.2 Transimpedance Amplifier Topologies. 6.3 Specifications. 6.4 Transimpedance Amplifier Design. 6.5 Simulation Results. 6.6 Block Layout. 6.7 Measurement Results. 6.8 Discussion. CHAPTER 7 Limiting Amplifier Design. 7.1 Principles of Signal Limiting. 7.2 Simple Limiting Amplifier Topologies. 7.3 Bandwidth Enhancement in Limiting Amplifiers. 7.4 Specifications. 7.5 Inductorless Limiting Amplifier Design. 7.6 Design of an Inductive Peaking Limiting Amplifier. 7.7 Complete Limiting Amplifier. 7.8 Simulation Results. 7.9 Block Layout. 7.10 Measurement Results. 7.11 Discussion. CHAPTER 8 Clock and Data Recovery Circuit. 8.1 Clock Recovery Principles. 8.2 CDR Topologies. 8.3 Topology Discussion. 8.4 Specifications. 8.5 The Gated Oscillator Topology. 8.6 Statistical Modeling of the Gated Oscillator. 8.7 Time-Domain Modeling. 8.8 Transistor-Level Design. 8.9 Measurement Results. 8.10 Conclusion. CHAPTER 9 Conclusions. References.