Contributions to Current Challenges in Mathematical Fluid Mechanics by Giovanni P. GaldiContributions to Current Challenges in Mathematical Fluid Mechanics by Giovanni P. Galdi

Contributions to Current Challenges in Mathematical Fluid Mechanics

byGiovanni P. GaldiEditorJohn G. Heywood, Rolf Rannacher

Paperback | October 23, 2012

Pricing and Purchase Info

$111.47 online 
$117.50 list price save 5%
Earn 557 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier­ Stokes equations in which he added in the linear momentum equation the hyper­ dissipative term (-Ll),Bu, f3 <_20_52f_4.>
Title:Contributions to Current Challenges in Mathematical Fluid MechanicsFormat:PaperbackDimensions:152 pages, 23.5 × 15.5 × 0.02 inPublished:October 23, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034896069

ISBN - 13:9783034896061

Look for similar items by category:


Table of Contents

On Multidimensional Burgers Type Equations with Small Viscosity.- 1. Introduction.- 2. Upper estimates.- 3. Lower estimates.- 4. Fourier coefficients.- 5. Low bounds for spatial derivatives of solutions of the Navier-Stokes system.- References.- On the Global Well-posedness and Stability of the Navier-Stokes and the Related Equations.- 1. Introduction.- 2. Littlewood-Paley decomposition.- 3. Proof of Theorems.- References.- The Commutation Error of the Space Averaged Navier-Stokes Equations on a Bounded Domain.- 1. Introduction.- 2. The space averaged Navier-Stokes equations in a bounded domain.- 3. The Gaussian filter.- 4. Error estimates in the (Lp(?d))d-norm of the commutation error term.- 5. Error estimates in the (H-1(?))d-norm of the commutation error term.- 6. Error estimates for a weak form of the commutation error term.- 7. The boundedness of the kinetic energy for ñ in some LES models.- References.- The Nonstationary Stokes and Navier-Stokes Flows Through an Aperture.- 1. Introduction.- 2. Results.- 3. The Stokes resolvent for the half space.- 4. The Stokes resolvent.- 5. L4-Lr estimates of the Stokes semigroup.- 6. The Navier-Stokes flow.- References.- Asymptotic Behavior at Infinity of Exterior Three-dimensional Steady Compressible Flow.- 1. Introduction.- 2. Function spaces and auxiliary results.- 3. Stokes and modified Stokes problems in weighted spaces.- 4. Transport equation and Poisson-type equation.- 5. Linearized problem.- 6. Nonlinear problem.- References.