Crop Physiology: Applications For Genetic Improvement And Agronomy

Paperback | October 30, 2017

byVictor O. Sadras, Daniel Calderini

not yet rated|write a review
From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bulk and quality food, fodder, fiber, and energy which are of ongoing international concern. The second edition of Crop Physiology continues to provide a unique analysis of these topics while reflecting important changes and advances in the relevant science and implementation systems. Contemporary agriculture confronts the challenge of increasing demand in terms of quantitative and qualitative production targets. These targets have to be achieved against the background of soil and water scarcity, worldwide and regional shifts in the patterns of land use driven by both climate change and the need to develop crop-based sources of energy, and the environmental and social aspects of agricultural sustainability. Provides a view of crop physiology as an active source of methods, theories, ideas, and tools for application in genetic improvement and agronomy Written by leading scientists from around the world Combines environment-specific cropping systems and general principles of crop science to appeal to advanced students, and scientists in agriculture-related disciplines, from molecular sciences to natural resources management

Pricing and Purchase Info

$165.37 online
$172.50 list price
Pre-order online
Ships free on orders over $25

From the Publisher

From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bul...

Format:PaperbackDimensions:564 pages, 8.75 × 6.35 × 0.68 inPublished:October 30, 2017Publisher:Academic PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0128100591

ISBN - 13:9780128100592

Look for similar items by category:

Customer Reviews of Crop Physiology: Applications For Genetic Improvement And Agronomy

Reviews

Extra Content

Table of Contents

Preface Acknowledgements 1. Crop Physiology: applications for breeding and agronomyPart 1: Farming Systems 2. High yield maize-soybean cropping systems in the U.S. corn belt 3. Farming systems of China: Innovations for sustainable crop production 4. Improving farming systems in northern Europe 5. Raising productivity of maize-based cropping systems in Eastern and Southern Africa: Step-wise intensification options 6. Cropping systems in high yielding potential environments. Opportunities and challenges in Southern Chile 7. Cereal yield in Mediterranean-type environments: challenging the paradigms on terminal drought, the adaptability of barley vs wheat and the role of nitrogen fertilizationPart 2: Carbon, water and nutrient economies of crops 8. Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen-use efficiency 9. A Darwinian perspective on improving nitrogen-fixation efficiency of legume crops and forages 10. Senescence and crop performance 11. Improving Water Transport for Carbon Gain in CropsPart 3: Genetic improvement and agronomy 12. Genetic and Environmental Effects on Crop Development Determining Adaptation and Yield 13. Characterising the crop environment nature, significance and applications 14. Model assisted phenotyping and ideotype design 15. Crop phenotyping for physiological breeding in grain crops: a case study for maize 16. Breeding challenge: improving yield potential 17. Improving grain quality. Ecophysiological and modelling tools to develop management and breeding strategies 18. Integrated views in plant breeding: from the perspective of biotechnology 19. Integration of biotechnology, plant breeding and crop physiology. Dealing with complex interactions from a physiological perspective 20. Crop modelling for climate change impact and adaptation