Crystal Oscillator Design And Temperature Compensation by Marvin FrerkingCrystal Oscillator Design And Temperature Compensation by Marvin Frerking

Crystal Oscillator Design And Temperature Compensation

byMarvin Frerking

Paperback | January 24, 2012

Pricing and Purchase Info

$135.36 online 
$150.50 list price save 10%
Earn 677 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

Crystal oscillators have been in use now for well over SO years-one of the first was built by W. G. Cady in 1921. Today, millions of them are made every year, covering a range of frequencies from a few Kilohertz to several hundred Mega­ hertz and a range of stabilities from a fraction of one percent to a few parts in ten to the thirteenth, with most of them, by far, still in the range of several tens of parts per million.Their major application has long been the stabilization of fre­ quencies in transmitters and receivers, and indeed, the utilization of the frequency spectrum would be in utter chaos, and the communication systems as we know them today unthinkable,'without crystal oscillators. With the need to accommodate ever increasing numbers of users in a limited spectrum space, this traditional application will continue to grow for the fore­ seeable future, and ever tighter tolerances will have to be met by an ever larger percentage of these devices.
Title:Crystal Oscillator Design And Temperature CompensationFormat:PaperbackDimensions:240 pages, 22.9 × 15.2 × 1.73 inPublished:January 24, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9401160589

ISBN - 13:9789401160582

Look for similar items by category:

Reviews

Table of Contents

1.Introduction.- 2.Basic Oscillator Theory.- 3.Methods of Design.- 3.1.Experimental Method of Design.- 3.2.Y-Parameter Method of Design.- 3.3.Power Gain Method of Design.- 3.4.Nonlinear Modifications.- 4.Oscillator Frequency Stability.- 4.1.Temperature Effects of Frequency.- 4.1.1.Temperature Control.- 4.1.2.Temperature Compensation.- 4.2.Long-Term Frequency Drift.- 4.3.Short-Term Frequency Stability.- 5.Quartz Crystal Resonators.- 5.1.Load Capacitance.- 5.2.Pin-To-Pin Capacitance.- 5.3.Resistance.- 5.4.Rated or Test Drive Level.- 5.5.Frequency Stability.- 5.6.Finishing or Calibration Tolerance.- 5.7.Crystal Aging.- 5.8.Q and Stiffness of Crystals.- 5.9.Mechanical Overtone Crystals.- 5.10.Spurious or Unwanted Modes.- 5.11.Vibration, Shock, and Acceleration.- 5.12.Standard Military Crystals.- 5.13.Specifications and Standards.- 6.Discussion of Transistors.- 6.1.Transistor Equivalent Circuits.- 6.2.Y-Parameter Model.- 6.3.Hybrid ? Equivalent Circuit.- 6.4.Nonlinear Models.- 6.4.1.Intrinsic Transistor Model.- 6.4.2.Nonlinear Model with Emitter Degeneration.- 7.Oscillator Circuits.- 7.1.Pierce, Colpitis, and Clapp Oscillators.- 7.2.Pierce Oscillator.- 7.2.1.Small-Signal Analysis.- 7.2.2.Large-Signal Analysis.- 7.2.3.1- to 3-MHz Pierce Oscillator.- 7.2.4.1- to 10-MHz Pierce Oscillator.- 7.2.5.10- to 20-MHz Pierce Oscillator.- 7.2.6.Overtone Pierce Oscillator.- 7.2.7.25-MHz Pierce Oscillator.- 7.2.8.Impedance-Inverting Pierce Oscillator.- 7.2.9.25-MHz Impedance-Inverting Pierce Oscillator.- 7.2.10.50-MHz Impedance-Inverting Pierce Oscillator.- 7.2.11.75-MHz Impedance-Inverting Pierce Oscillator.- 7.3.Colpitis Oscillator.- 7.3.1.3- to 10-MHz Colpitis Oscillator.- 7.3.2.10- to 20-MHz Colpitis Oscillator.- 7.4.Clapp Oscillator.- 7.4.1. 3- to 20-MHz Clapp Oscillator Circuit.- 7.5.Grounded-Base Oscillator.- 7.5.1.25-MHz Grounded-Base Oscillator.- 7.5.2.50-MHz Grounded-Base Oscillator.- 7.5.3.75-MHz Grounded-Base Oscillator.- 7.5.4.110-MHz Grounded-Base Oscillator.- 7.6.Gate Oscillators.- 7.6.1.Single-Gate Oscillators.- 7.6.2.Multiple-Gate Oscillators.- 7.7.Integrated-Circuit Oscillators.- 8.Preproduction Tests for Crystal Oscillators.- 9.Other Topics.- 9.1.Crystal Switches.- 9.2.Pullable Oscillators.- 9.3.Crystal Ovens.- 9.4.Squegging, Squelching, or Motorboating.- 9.5.Spurious Oscillations.- 10. Temperature Compensation.- 10.1.Analog Temperature Compensation.- 10.2.Hybrid Analog-Digital Compensation.- 10.3.Digital Temperature Compensation.- 10.4.Temperature Compensation with Microprocessors.- Appendix A Derivation of the Complex Equation for Oscillation.- Appendix B Derivation of Y-Parameter Equations for the Pierce Oscillator.- Appendix C Derivation of Y-Parameter Equations for the Grounded-Base Oscillator.- Appendix D Derivation of Approximate Equations for the Clapp Oscillator.- Appendix E Derivation of Approximate Equations for the Pierce Oscillator Analysis.- Appendix F Derivation of Approximate Equations for the Colpitts Oscillator.- Appendix G Large-Signal Transistor Parameters.- Appendix H Large-Signal Transistor Parameters with Emitter Degeneration.- Appendix I Nonlinear Analysis of the Colpitts Oscillator Based on the Principle of Harmonic Balance.- Appendix J Mathematical Development of the Sideband Level versus Phase Deviation Equation.- Appendix K Derivation of Crystal Equations.- Appendix L Sample Crystal Specification.