Current Distributions and Electrode Shape Changes in Electrochemical Systems by Johan DeconinckCurrent Distributions and Electrode Shape Changes in Electrochemical Systems by Johan Deconinck

Current Distributions and Electrode Shape Changes in Electrochemical Systems

byJohan Deconinck

Paperback | March 30, 1992

Pricing and Purchase Info

$194.95

Earn 975 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

This book reponds to the increasing demand of computer mo-delling of electrochemical processes in order to improvetheir speed and efficiency. The fundamental transport equa-tions in dilute solutions are given and it is established indetail under what circumstances a potential model with non-linear boundary conditions, involved by electrode reactions,can beused. Attention is directed towards the most impor-tant solution techniquesFEM, FDM and BEM and towards thesolution of the non-linear system of equations (SuccessiveSubstitution, Newton-Raphson). Using the BEM, several two-dimensional and axisymmetrical examples of current densitydistributions are given and quantitative data, obtained in acopper electro-refining cell, are compared with calculatedresults. Applying Faraday's Law and the BEM, simulation ofelectro-deposition, electro-chemical levelling and machiningare treated. Accuracy and stabilityare emphasized.
Title:Current Distributions and Electrode Shape Changes in Electrochemical SystemsFormat:PaperbackDimensions:296 pagesPublished:March 30, 1992Publisher:Springer Berlin HeidelbergLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3540551042

ISBN - 13:9783540551041

Reviews

Table of Contents

1. The Current Distribution in Electro-Chemical Systems.- 1.1. Introduction.- 1.2. The electrode-electrolyte interphase.- 1.2.1. The equilibrium situation.- 1.2.2. Electrode reactions.- 1.2.3. The activation overpotential na.- 1.3. Transport equations in dilute solutions.- 1.3.1. The flux of a dissolved species.- 1.3.2. The current density.- 1.3.3. Conservation of mass.- 1.3.4. The Poisson equation or electroneutrality.- 1.3.5. The continuity equation.- 1.3.6. The Navier-Stokes equation.- 1.4. Solution of the transport equations in dilute solutions.- 1.4.1. Basic system of equations.- 1.4.2. The potential model.- 1.4.3. The concentration overpotential nc.- 1.5. The boundary conditions of the potential model.- 1.5.1. The boundary condition on-the walls.- 1.5.2. The boundary conditions on the electrodes.- 1.5.3. Additional boundary conditions.- 1.5.3.1. Resistive electrodes.- 1.5.3.2. Resistance involved by coatings.- 1.6. Types of current distributions.- 1.6.1. Introduction.- 1.6.2. The primary distribution.- 1.6.3. The secondary distribution.- 1.6.4. The tertiary distribution.- 1.6.4.1. Distribution over microprofiles.- 1.6.4.2. Distribution over macroprofiles.- 1.7. The Wagner number.- 1.8. Electrode shape change.- 1.8.1. Faraday's law.- 1.8.2. The current efficiency.- 1.8.3. Moving boundaries and electrochemical machining 4.- 1.8.4. Equations to solve.- 1.8.5. Electrode shape change between parallel electrodes.- 1.8.6. Electrochemical machining between plane parallel electrodes.- 1.9. Conclusion.- 2. Solution of the Potential Model.- 2.1. Introduction.- 2.2. Hypotheses and definitions.- 2.3. Weighted residual statements for the Laplace equation.- 2.4. Solution of current distributions with trial functions satisfying the field equations.- 2.5. Solution of current distributions with trial functions not satisfying the field equations.- 2.5.1. The finite difference method.- 2.5.2. The finite element method.- 2.5.3. The Newton-Raphson iteration associated with the finite element method.- 2.5.4. The method of straight lines.- 2.6. Solution of current distributions based on weight functions satisfying the field equation.- 2.6.1. The boundary element method.- 2.6.2. The Newton-Raphson iteration process in boundary elements.- 2.7. The physical interpretation of the integral equation.- 2.7.1. The potential generated by a charged surface.- 2.7.2. The potential generated by a double source density on a surface.- 2.7.3. Green's formula and source distributions.- 2.8. The outer normal convention..- 2.9. Indirect and regular boundary methods.- 2.10. Comparison of the treated weighted residual methods.- 2.11. Solution of current distributions by electric simulation.- 2.12. Conclusion.- 3. The Boundary Element Method to Solve Current Distributions.- 3.1. Introduction.- 3.2. Concretization of the boundary element method.- 3.2.1. Choice of used elements.- 3.2.1.1. Two-dimensional problems.- 3.2.1.2. Three-dimensional axisymmetric problems.- 3.2.2. Combination of regions.- 3.3. The overvoltage equations.- 3.3.1. The Butler-Volmer equation.- 3.3.2. The concentration overpotential.- 3.3.3. Linear and measured overpotentials.- 3.4. Solution of the non-linear system of equations.- 3.4.1. Solution of the linear system of equations 120 3.4-.2. Iteration techniques for non-linear systems.- 3.4.2.1. The successive substitution method.- 3.4.2.2. The Newton-Raphson iteration method - Global convergence conditions.- 3.4.2.3. Convergence criteria.- 3.4.2.4. A Newton-Raphson iteration versus a successive substitution.- 3.5. Examples.- 3.5.1. The Hull-cell.- 3.5.2. The influence of overpotentials on singularities.- 3.5.3. Industrial production-type cells.- 3.5.3.1. Two-dimensional cell composed of an electrode with open part and separator.- 3.5.3.2. A chlorine production cell.- 3.5.4. Current distribution in a circular hole.- 3.6. Copper electrorefining: numerical and experimental results.- 3.6.1. Electrochemical data 14..- 3.6.1.1. The electrolytic solution.- 3.6.1.2. The overvoltages.- 3.6.2. The cell geometry.- 3.6.3. The measuring equipment.- 3.6.4. The experimental procedure.- 3.6.5. Experimental results.- 3.6.5.1. Measurement 1: 6 cm interelectrode distance.- 3.6.5.2. Measurement 2: 12 cm interelectrode distance.- 3.6.6. Comparison with calculations.- 3.7. Conclusion.- 4. Electrode Shape Change.- 4.1. Introduction.- 4.2. The discretization with respect to time.- 4.2.1. The Euler method.- 4. 2.1.1. Convergence and accuracy.- 4.2.1.2. Stability.- 4.2.2. Higher-order integration schemes.- 4. 2.2.1. The predictor-corrector method (Heun).- 4.3. The electrode shape change algorithm.- 4.3.1. Electrodeposition.- 4. 3.1.1. Electrode next to an insulator: internal angle > ?/2.- 4.3.1.2. Electrode next to an insulator: internal angle ? ?/2.- 4.3.2. Electrode dissolution.- 4.3.3. Electrochemical machining.- 4.4. Examples.- 4.4.1. Electrodeposition in a Hull-cell.- 4.4.2. Deposition and dissolution in a cell with sinusoidal profile.- 4.4.3. Anodic leveling and electrochemical machining in a cell with irregular shape.- 4.4.4. ECM in a cell with hemispherical cathode.- 4.4.5. Conclusion: comments on the efficiency of the BEM.- 4.5. Electrodeposition and electrode dissolution in copper electrorefining. Numerical and experimental results.- 4.5.1. Electrochemical data.- 4.5.2. The cell geometry.- 4.5.3. The measuring equipment.- 4.5.4. The experimental procedure.- 4.5.5. Experimental results and comparison with calculations.- 4.5.6. The influence of a screen.- 4.6. Conclusion.- 5. General Conclusion.- References.- Appendices.- A.1.1 Primary current distribution along a free cathode in parallel with an anode and perpendicular to an insulating boundary.- A.1.2 Primary current distribution along an L-shaped cathode.- A.1.3 Primary current distribution along a cathode being in line with an insulating boundary.- A.2 Solution of the potential model using trial functions satisfying the field equation: example.- A.3.1 Analytic integration of integrals involved by the two-dimensional boundary element method using straight elements.- A.3.2 Evaluation of integrals involved by the boundary element method used to solve axisymmetric potential problems.- A.4 The global Newton convergence of the potential problem with non-linear boundary conditions.