Decision Processes in Dynamic Probabilistic Systems by A.V. GheorgheDecision Processes in Dynamic Probabilistic Systems by A.V. Gheorghe

Decision Processes in Dynamic Probabilistic Systems

byA.V. Gheorghe

Paperback | September 22, 2011

Pricing and Purchase Info

$158.71 online 
$167.95 list price save 5%
Earn 794 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores

Title:Decision Processes in Dynamic Probabilistic SystemsFormat:PaperbackPublished:September 22, 2011Publisher:Springer NetherlandsLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9401067082

ISBN - 13:9789401067089

Look for similar items by category:


Table of Contents

1 Semi-Markov and Markov Chains.- 1.1 Definitions and basic properties.- 1.1.1 Discrete time semi-Markov and Markov behaviour of systems.- 1.1.2 Multi-step transition probability.- 1.1.3 Semi-Markov processes.- 1.1.4 State occupancy and waiting-time statistics.- 1.1.5 Non-homogeneous Markov processes.- 1.1.6 The limit theorem.- 1.1.7 Effect of small deviations in the transition probability matrix.- Limits of some important characteristics for Markov chains.- 1.2 Algebraic and analytical methods in the study of Markovian systems.- 1.2.1 Eigenvalues and eigenvectors.- 1.2.2 Stochastic matrices.- 1.2.3 Perron-Frobenius theorem.- 1.2.4 The Geometric transformation (the z-transform).- 1.2.5 Exponential transformation (Laplace transform).- 1.3 Transient and recurrent processes.- 1.3.1 Transient processes.- 1.3.2 The study of recurrent state occupancy in Markov processes.- 1.4 Markovian populations.- 1.4.1 Vectorial processes with a Markovian structure.- 1.4.2 General branching processes.- 1.5 Partially observable Markov chains.- 1.5.1 The core process.- 1.5.2 The observation process.- 1.5.3 The state of knowledge and its dynamics.- 1.5.4 Examples.- 1.6 Rewards and discounting.- 1.6.1 Rewards for sequential decision processes.- 1.6.2 Rewards in decision processes with Markov structure.- 1.6.3 Markovian decision processes with and without discounting.- 1.7 Models and applications.- 1.7.1 Real systems with a Markovian structure.- 1.7.2 Model formulation and practical results.- A semi-Markov model for hospital planning.- System reliability.- A Markovian interpretation for PERT networks.- 1.8 Dynamic-decision models for clinical diagnosis.- 1.8.1 Pattern recognition.- 1.8.2 Model optimization.- 2 Dynamic and Linear Programming.- 2.1 Discrete dynamic programming.- 2.2 A linear programming formulation and an algorithm for computation.- 2.2.1 A general formulation for the LP problem and the Simplex method.- 2.2.2 Linear programming - a matrix formulation.- 3 Utility Functions and Decisions under Risk.- 3.1 Informational lotteries and axioms for utility functions.- 3.2 Exponential utility functions.- 3.3 Decisions under risk and uncertainty; event trees.- 3.4 Probability encoding.- 4 Markovian Decision Processes (Semi-Markov and Markov) with Complete Information (Completely Observable).- 4.1 Value iteration algorithm (the finite horizon case).- 4.1.1. Semi-Markov decision processes.- 4.1.2 Markov decision processes.- 4.2 Policy iteration algorithm (the finite horizon optimization).- 4.2.1 Semi-Markov decision processes.- 4.2.2 Markov decision processes.- 4.3 Policy iteration with discounting.- 4.3.1 Semi-Markov decision processes.- 4.3.2 Markov decision processes.- 4.4 Optimization algorithm using linear programming.- 4.4.1 Semi-Markov decision process.- 4.4.2 Markov decision processes.- 4.5 Risk-sensitive decision processes.- 4.5.1 Risk-sensitive finite horizon Markov decision processes.- 4.5.2 Risk-sensitive infinite horizon Markov decision processes.- 4.5.3 Risk-sensitive finite horizon semi-Markov decision processes.- 4.5.4 Risk-sensitive infinite horizon semi-Markov decision processes.- 4.6 On eliminating sub-optimal decision alternatives in Markov and semi-Markov decision processes.- 4.6.1 Markov decision processes.- 4.6.2 Semi-Markov decision processes with finite horizon.- 5 Partially Observable Markovian Decision Processes.- 5.1 Finite horizon partially observable Markov decision processes.- 5.2 The infinite horizon with discounting for partially observable Markov decision processes.- 5.2.1 Model formulation.- 5.2.2 The concept of finitely transient policies.- 5.2.3 The function C(?|?) approximated as a Markov process with a finite number of states.- 5.3 A useful policy iteration algorithm, for discounted (? 2.- 5.4 The infinite horizon without discounting for partially observable Markov processes.- 5.4.1 Model formulations.- 5.4.2 Cost of a stationary policy.- 5.4.3 Policy improvement phase.- 5.4.4 Policy iteration algorithm.- 5.5 Partially observable semi-Markov decision processes.- 5.5.1 Model formulation.- 5.5.2 State dynamics.- 5.5.3 The observation space.- 5.5.4 Overall system dynamics.- 5.5.5 Decision alternatives in clinical disorders.- 5.6 Risk-sensitive partially observable Markov decision processes.- 5.6.1 Model formulation and practical examples.- Maintenance policies for a nuclear reactor pressure vessel.- Medical diagnosis and treatment as applied to physiological systems.- 5.6.2 The stationary Markov decision process with probabilistic observations of states.- 5.6.3 A branch and bound algorithm.- 5.6.4 A Fibonacci search method for a branch and bound algorithm for a partially observable Markov decision process.- 5.6.5 A numerical example.- 6 Policy Constraints in Markov Decision Processes.- 6.1 Methods of investigating policy costraints in Markov decision processes.- 6.2 Markov decision processes with policy constraints.- 6.2.1 A Lagrange multiplier formulation.- 6.2.2 Development and convergence of the algorithm.- 6.2.3 The case of transient states and periodic processes.- 6.3 Risk-sensitive Markov decision process with policy constraints.- 6.3.1 A Lagrange multiplier formulation.- 6.3.2 Development and convergence of the algorithm.- 7 Applications.- 7.1 The emergency repair control for electrical power systems.- 7.1.1 Reliability and system effectiveness.- 7.1.2 Reward structure.- 7.1.3 The Markovian decision process for emergency repair.- 7.1.4 Linear programming formulation for repair optimization.- 7.1.5 The investment problem.- 7.2 Stochastic models for evaluation of inspection and repair schedules [2].- 7.2.1 Inspection actions.- Complete inspection.- Control limit inspection.- Inspection.- 7.2.2 Markov chain models.- 7.2.3 Cost structures and operating requirements.- costs.- Repair costs.- Operating costs and requirements.- Inspection and repair policies.- Closed loop policies.- Updating state probabilities after an inspection.- Obtaining next-time state probabilities using transition matrix.- loop policies.- 7.3 A Markovian dicision model for clinical diagnosis and treatment applied to the respiratory system.- 7.3.1 Concept of state in the respiratory system.- 7.3.2 The clinical observation space.- 7.3.3. Computing probabilities in cause-effect models and overall system dynamics.- 7.3.4 Decision alternatives in respiratory disorders.- Branch and bound algorithm.- Steps in the branch and bound algorithm.- 7.3.5 A numerical example for the respiratory system.- 7.3.6 Concllusions.