Design of Feedback Control Systems

Hardcover | September 15, 2001

byRaymond T. Stefani, Bahram Shahian, Clement J. Savant

not yet rated|write a review
Design of Feedback Control Systems is designed for electrical and mechanical engineering students in advanced undergraduate control systems courses. Now in its fourth edition, this tutorial-style textbook has been completely updated to include the use of modern analytical software, especiallyMATLABRG. It thoroughly discusses classical control theory and state variable control theory, as well as advanced and digital control topics. Each topic is preceded by analytical considerations that provide a well-organized parallel treatment of analysis and design. Design is presented in separatechapters devoted to root locus, frequency domain, and state space viewpoints. Treating the use of computers as a means rather than as an end, this student-friendly book contains new "Computer-Aided Learning" sections that demonstrate how MATLABRG can be used to verify all figures and tables in thetext. Clear and accessible, Design of Feedback Control Systems, Fourth Edition, makes complicated methodology comprehensible to a wide spectrum of students. Features * Keyed to today's dominant design tool, MATLABRG * Includes drill problems for gauging knowledge and skills after each topic * Provides state-of-the-art design examples * Uses marginal summaries to guide the reader * Introduces new ideas in the context of previous material, with a guide to the information that follows * Presents practical examples of the latest advances in control sciences

Pricing and Purchase Info

$249.95

Ships within 1-3 weeks
Ships free on orders over $25

From the Publisher

Design of Feedback Control Systems is designed for electrical and mechanical engineering students in advanced undergraduate control systems courses. Now in its fourth edition, this tutorial-style textbook has been completely updated to include the use of modern analytical software, especiallyMATLABRG. It thoroughly discusses classical ...

Raymond T. Stefani, Bahram Shahian, and Gene Hostetter are all at California State University, Long Beach.
Format:HardcoverDimensions:864 pages, 7.01 × 9.09 × 1.5 inPublished:September 15, 2001Publisher:Oxford University PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0195142497

ISBN - 13:9780195142495

Look for similar items by category:

Customer Reviews of Design of Feedback Control Systems

Reviews

Extra Content

Table of Contents

PrefaceChapter 1. Continuous-Time System Description1.1. Preview1.2. Basic Concepts1.2.1. Control System Terminology1.2.2. The Feedback Concept1.3. Modeling1.4. System Dynamics1.5. Electrical Components1.5.1. Mesh Analysis1.5.2. State Variables1.5.3. Node Analysis1.5.4. Analyzing Operational Amplifier Circuits1.5.5. Operational Amplifier Applications1.6. Translational Mechanical Components1.6.1. Free Body Diagrams1.6.2. State Variables1.7. Rotational Mechanical Components1.7.1. Free Body Diagrams1.7.2. Analogies1.7.3. Gear Trains and Transformers1.8. Electromechanical Components1.9. Aerodynamics1.9.1. Nomenclature1.9.2. Dynamics1.9.3. Lateral and Longitudinal Motion1.10. Thermal Systems1.11. Hydraulics1.12. Transfer Function and Stability1.12.1. Transfer Functions1.12.2. Response Terms1.12.3. Multiple Inputs and Outputs1.12.4. Stability1.13. Block Diagrams1.13.1. Block Diagram Elements1.13.2. Block Diagram Reductions1.13.3. Multiple Inputs and Outputs1.14. Signal Flow Graphs1.14.1. Comparison and Block Diagrams1.14.2. Mason's Rule1.15. A Positioning Servo1.16. Controller Model of the Thyroid Gland1.17. Stick-Slip Response of an Oil Well Drill1.18. SummaryReferencesProblemsChapter 2. Continuous-Time System Response2.1. Preview2.2. Response of First-Order Systems2.3. Response of Second-Order Systems2.3.1. Time Response2.3.2. Overdamped Response2.3.3. Critically Damped Response2.3.4. Underdamped Response2.3.5. Undamped Natural Frequency and Damping Ratio2.3.6. Rise Time, Overshoot and Settling Time2.4. Higher-Order System Response2.5. Stability Testing2.5.1. Coefficient Tests2.5.2. Routh-Hurwitz Testing2.5.3. Significance of the Array Coefficients2.5.4. Left-Column Zeros2.5.5. Row of Zeros2.5.6. Eliminating a Possible Odd Divisor2.5.7. Multiple Roots2.6. Parameter Shifting2.6.1. Adjustable Systems2.6.2. Khartinov's Theorem2.7. An Insulin Delivery System2.8. Analysis of an Aircraft Wing2.9. SummaryReferencesProblemsChapter 3. Performance Specifications3.1. Preview3.2. Analyzing Tracking Systems3.2.1. Importance of Tracking Systems3.2.2. Natural Response, Relative Stability and Damping3.3. Forced Response3.3.1. Steady State Error3.3.2. Initial and Final Values3.3.3. Steady State Errors to Power-of-Time Inputs3.4. Power-of-Time Error Performance3.4.1. System Type Number3.4.2. Achieving a Given Type Number3.4.3. Unity Feedback Systems3.4.4. Unity Feedback Error Coefficients3.5. Performance Indices and Optimal Systems3.6. System Sensitivity3.6.1. Calculating the Effects of Changes in Parameters3.6.2. Sensitivity Functions3.6.3. Sensitivity to Disturbance Signals3.7. Time Domain Design3.7.1. Process Control3.7.2. Ziegler-Nichols Compensation3.7.3. Chien-Hrones-Reswick Compensation3.8. An Electric Rail Transportation System3.9. Phase-Locked Loop for a CB Receiver3.10. Bionic Eye3.11. SummaryReferencesProblemsChapter 4. Root Locus Analysis4.1. Preview4.2. Pole-Zero Plots4.2.1. Poles and Zeros4.2.2. Graphical Evaluation4.3. Root Locus for Feedback Systems4.3.1. Angle Criterion4.3.2. High and Low Gains4.3.3. Root Locus Properties4.4. Root Locus Construction4.5. More About Root Locus4.5.1. Root Locus Calibration4.5.2. Computer-Aided Root Locus4.6. Root Locus for Other Systems4.6.1. Systems with Other Forms4.6.2. Negative Parameter Ranges4.6.3. Delay Effects4.7. Design Concepts (Adding Poles and Zeros)4.8. A Light-Source Tracking System4.9. An Artificial Limb4.10. Control of a Flexible Spacecraft4.11. Bionic Eye4.12. SummaryReferencesProblemsChapter 5. Root Locus Design5.1. Preview5.2. Shaping a Root Locus5.3. Adding and Canceling Poles and Zeros5.3.1. Adding a Pole or Zero5.3.2. Canceling a Pole or Zero5.4. Second-Order Plant Models5.5. An Uncompensated Example System5.6. Cascade Proportional Plus Integral (PI)5.6.1. General Approach to Compensator Design5.6.2. Cascade PI Compensation5.7. Cascade Lag Compensation5.8. Cascade Lead Compensation5.9. Cascade Lag-Lead Compensation5.10. Rate Feedback Compensation (PD)5.11. Proportional-Integral-Derivative Compensation5.12. Pole Placement5.12.1. Algebraic Compensation5.12.2. Selecting the Transfer Function5.12.3. Incorrect Plant Transmittance5.12.4. Robust Algebraic Compensation5.12.5. Fixed-Structure Compensation5.13. An Unstable High-Performance Aircraft5.14. Control of a Flexible Space Station5.15. Control of a Solar Furnace5.16. SummaryReferencesProblemsChapter 6. Frequency Response Analysis6.1. Preview6.2. Frequency Response6.2.1. Forced Sinusoidal Response6.2.2. Frequency Response Measurement6.2.3. Response at Low and High Frequencies6.2.4. Graphical Frequency Response Methods6.3. Bode Plots6.3.1. Amplitude Plots in Decibels6.3.2. Real Axis Roots6.3.3. Products of Transmittance Terms6.3.4. Complex Roots6.4. Using Experimental Data6.4.1. Finding Models6.4.2. Irrational Transmittances6.5. Nyquist Methods6.5.1. Generating the Nyquist (Polar) Plot6.5.2. Interpreting the Nyquist Plot6.6. Gain Margin6.7. Phase Margin6.8. Relations between Closed-Loop and Open-Loop Frequency Response6.9. Frequency Response of a Flexible Spacecraft6.10. SummaryReferencesProblemsChapter 7. Frequency Response Design7.1. Preview7.2. Relation between Root Locus, Time Domain, and Frequency Domain7.3. Compensation Using Bode Plots7.4. Uncompensated System7.5. Cascade Proportional Plus Integral (PI) and Cascade Lag Compensations7.6. Cascade Lead Compensation7.7. Cascade Lag-Lead Compensation7.8. Rate Feedback Compensation7.9. Proportional-Integral-Derivative Compensation7.10. An Automobile Driver as a Compensator7.11. SummaryReferencesProblemsChapter 8. State Space Analysis8.1. Preview8.2. State Space Representation8.2.1. Phase-Variable Form8.2.2. Dual Phase-Variable Form8.2.3. Multiple Inputs and Outputs8.2.4. Physical State Variables8.2.5. Transfer Functions8.3. State Transformations and Diagonalization8.3.1. Diagonal Forms8.3.2. Diagonalization Using Partial-Fraction Expansion8.3.3. Complex Conjugate Characteristic Roots8.3.4. Repeated Characteristic Roots8.4. Time Response from State Equations8.4.1. Laplace Transform Solution8.4.2. Time-Domain Response of First-Order Systems8.4.3. Time-Domain Response of Higher-Order Systems8.4.4. System Response Computation8.5. Stability8.5.1. Asymptotic Stability8.5.2. BIBO Stability8.5.3. Internal Stability8.6. Controllability and Observability8.6.1. The Controllability Matrix8.6.2. The Observability Matrix8.6.3. Controllability, Observability and Pole-Zero Cancellation8.6.4. Causes of Uncontrollability8.7. Inverted Pendulum Problems8.8. SummaryChapter 9. State Space Design9.1. Preview9.2. State Feedback and Pole Placement9.2.1. Stabilizability9.2.2. Choosing Pole Locations9.2.3. Limitations of State Feedback9.3. Tracking Problems9.3.1. Integral Control9.4. Observer Design9.4.1. Control Using Observers9.4.2. Separation Property9.4.3. Observer Transfer Function9.5. Reduced-Order Observer Design9.5.1. Separation Property9.5.2. Reduced-Order Observer Transfer Function9.6. A Magnetic Levitation System9.7. SummaryChapter 10. Advanced State Space Methods10.1. Preview10.2. The Linear Quadratic Regulator Problem10.2.1. Properties of the LQR Design10.2.2. Return Difference Inequality10.2.3. Optimal Root Locus10.3. Optimal Observers--The Kalman Filter10.4. The Linear Quadratic Gaussian (LQG) Problem10.4.1. Critique of LGQ10.5. Robustness10.5.1. Feedback Properties10.5.2. Uncertainty Modeling10.5.3. Robust Stability10.6. Loop Transfer Recovery (LTR)10.7. HY Control10.7.1. A Brief History10.7.2. Some Preliminaries10.7.3. HY Control: Solution10.7.4. Weights in HY Control Problem10.8. SummaryReferencesProblemsChapter 11. Digital Control11.1. Preview11.2. Computer Processing11.2.1. Computer History and Trends11.3. A/D and D/A Conversion11.3.1. Analog-to-Digital Conversion11.3.2. Sample and Hold11.3.3. Digital-to-Analog Conversion11.4. Discrete-Time Signals11.4.1. Representing Sequences11.4.2. Z-Transformation and Properties11.4.3. Inverse z-Transform11.5. Sampling11.6. Reconstruction of Signals from Samples11.6.1. Representing Sampled Signals with Impulses11.6.2. Relation between the z-Transform and the Laplace Transform11.6.3. The Sampling Theorem11.7. Discrete-Time Systems11.7.1. Difference Equations Response11.7.2. Z-Transfer Functions11.7.3. Block Diagrams and Signal Flow Graphs11.7.4. Stability and the Bilinear Transformation11.7.5. Computer Software11.8. State-Variable Descriptions of Discrete-Time Systems11.8.1. Simulation Diagrams and Equations11.8.2. Response and Stability11.8.3. Controllability and Observability11.9. Digitizing Control Systems11.9.1. Step-Invariant Approximation11.9.2. z-Transfer Functions of Systems with Analog Measurements11.9.3. A Design Example11.10. Direct Digital Design11.10.1. Steady State Response11.10.2. Deadbeat Systems11.10.3. A Design Example11.11. SummaryReferencesProblemsAppendix A. Matrix AlgebraA.1. PreviewA.2. NomenclatureA.3. Addition and SubtractionA.4. TranspositionA.5. MultiplicationA.6. Determinants and CofactorsA.7. InverseA.8. Simultaneous EquationsA.9. Eigenvalues and EigenvectorsA.10. Derivative of a Scalar with Respect to a VectorA.11. Quadratic Forms and SymmetryA.12. DefinitenessA.13. RankA.14. Partitioned MatricesProblemsAppendix B. Laplace TransformB.1. PreviewB.2. Definition and PropertiesB.3. Solving Differential EquationsB.4. Partial Fraction ExpansionB.5. Additional Properties of the Laplace TransformReal TranslationSecond Independent VariableFinal Value and Initial Value TheoremsConvolution IntegralIndex

Editorial Reviews

"An excellent text book that explains the basic concepts to the beginner in a very lucid way, yet goes on to cover many advanced topics in sufficient detail."--Ajeet Singh, DeVry Technical Institute