Design of Tools for Deformation Processes by T. Z. BlazynskiDesign of Tools for Deformation Processes by T. Z. Blazynski

Design of Tools for Deformation Processes

byT. Z. Blazynski

Paperback | October 13, 2011

Pricing and Purchase Info

$125.55 online 
$128.95 list price
Earn 628 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

Although the problem of tool design - involving both the selection of suitable geometry and material- has exercised the attention of metal­ forming engineers for as long as this industrial activity has existed, the approach to its solution has been generally that of the 'trial and error' variety. It is only relatively recently that the continuing expansion of the bulk metal-forming industry, combined with an increase in the degree of sophistication required of its products and processes, has focussed attention on the problem of optimisation of tool design. This, in turn, produced a considerable expansion of theoretical and practical investi­ gations of the existing methods, techniques r,nd concepts, and helped to systematise our thinking and ideas in this area of engineering activity. In the virtual absence, so far, of a single, encyclopaedic, but sufficien­ tly deep, summation of the state of the art, a group of engineers and materials scientists felt that an opportune moment had arrived to try and produce, concisely, answers to many tool designers' dilemmas. This book attempts to set, in perspective, the existing - and proven - concepts of design, to show their respective advantages and weaknesses and to indicate how they should be applied to the individual main forming processes of rolling, drawing, extrusion and forging.
Title:Design of Tools for Deformation ProcessesFormat:PaperbackDimensions:9.02 × 5.98 × 0.01 inPublished:October 13, 2011Publisher:Springer NetherlandsLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:940108355X

ISBN - 13:9789401083553

Look for similar items by category:

Reviews

Table of Contents

1. Concepts of Tool Design.- 1.1. Introduction.- 1.2. Pass Geometry and Product Quality.- 1.2.1. Introduction.- 1.2.2. Assessment of Pass Efficiency.- 1.3. Empirical and Theoretical Bases for Design.- 1.3.1. Development of Concepts.- 1.3.2. Specific Design Concepts.- 1.4. Design Concepts and Their Effects.- References.- 2. Longitudinal and Oblique Rolling.- 2.1. Longitudinal Rolling: Hollow Sections.- 2.2. Roll Groove Design: Sinking and Stretch-Reducing Mills.- 2.3. Longitudinal Rolling: Bar and Rod.- 2.4. The Pilger Process: Rotary Forging.- 2.5. The Push Bench Process.- 2.6. The Diescher Mill: Elongation by Oblique Rolling.- 2.7. Expanding by Oblique Rolling.- 2.8. The Assel Mill: Oblique Elongating by Three Stepped Rolls.- 2.9. Three-Roll Planetary Rolling.- 2.10. Rotary Piercing.- References.- 3. The Drawing of Metals.- 3.1. Developments in the Drawing of Metals.- 3.2. Developments in Drawing Lubricants.- 3.3. Development of Tool Materials.- 3.4. The Mechanical Design of Draw Tools.- 3.5. Theoretical Considerations.- 3.5.1. General Introduction.- 3.5.2. Force Equilibrium Analysis of the Axisymmetric Drawing of Wire, Rod or Bar through a Straight Conical Die.- 3.5.3. Force Equilibrium Analysis of the Axisymmetric Drawing of Tube through a Straight Conical Die.- 3.5.4. The Axisymmetric Drawing of Bi-metal Tube.- 3.6. Unusual and Recent Developments in Drawing.- 3.6.1. Hydrodynamic Drawing.- 3.6.2. Section Drawing.- 3.6.3. Elevated Temperature Drawing.- 3.6.4. Ultrasonic Drawing.- References.- 4. Extrusion.- 4.1. Introduction.- 4.2. Design of Tools for Hot Extrusion.- 4.2.1. Mandrel.- 4.2.2. Dummy Blocks.- 4.2.3. Die Stack.- 4.3. Industrial Practice in Tool Design.- 4.3.1. Mandrels.- 4.3.2. Dummy Blocks.- 4.3.3. Dies.- 4.4. Theoretical Approaches and Limitations.- 4.5. Future Developments.- 4.6. Conform.- 4.7. Cold Extrusion of Steel.- 4.7.1. Nomenclature and Tool Assembly Drawings.- 4.7.2. Punches.- 4.7.3. Dies.- 4.7.4. Other Tools.- 4.8. Cold Extrusion of Non-Ferrous Components.- 4.8.1. Introduction.- 4.8.2. Materials.- 4.8.3. Tool Design.- 4.9. Hydrostatic, HERF and Other Extrusion Techniques.- References.- 5. Forging.- 5.1. Forging Process Variables Affecting Die Design and Manufacture.- 5.1.1. Forging Materials.- 5.1.2. Forging Equipment.- 5.1.3. Friction and Lubrication.- 5.1.4. Heat Transfer and Temperature.- 5.1.5. Production Lot Size and Tolerances.- 5.2. Importance of Forging Geometry and Shape Complexity.- 5.3. Design of Finisher Dies.- 5.3.1. Estimation of Flash Dimensions.- 5.3.2. Prediction of Forging Stresses and Load.- 5.4. Design of Blocker Dies.- 5.4.1. Significance of Blocker Geometry.- 5.4.2. Distribution of Volume.- 5.4.3. Empirical Rules for Blocker Design.- 5.5. Computer-Aided Methods for Designing Forging Dies.- 5.5.1. CAD/CAM System Requirements and Selection.- 5.5.2. Design of Finisher Dies.- 5.5.3. Design of Blocker Dies.- 5.6. Metal Flow Simulation for Optimizing Die Design.- 5.6.1. Metal Flow Simulation Using the Slab Method.- 5.6.2. Simulation of Metal Flow in Round Forgings Using the Rigid Plastic Finite Element Method.- 5.7. Manufacturing of Forging Dies.- 5.7.1. Manual (Conventional) Turning or Milling.- 5.7.2. Copy Milling.- 5.7.3. Numerical Control (NC) Machining of Die Cavities.- 5.7.4. Electrodischarge Machining (EDM).- 5.7.5. Hobbing.- 5.8. Dies for Special Forging Techniques.- 5.8.1. Flashless Forging with Multiple Die Motion.- 5.8.2. Forging of Parts with Undercuts Using Split Dies.- 5.8.3. Core Forging of Parts with Lateral Protrusions.- 5.8.4. Dies for Precision Forging.- References.- 6. Friction and Tools.- 6.1. Influence of Friction in Metal-Working.- 6.2. The Mechanics of Asperity Deformation.- 6.3. The Origin of Friction Stresses.- 6.4. Lubrication.- 6.4.1. Mechanisms of Lubrication.- 6.4.2. Lubricants for Metal-Forming Processes.- 6.5. Measurement of Friction.- 6.5.1. Rolling.- 6.5.2. Drawing.- 6.5.3. Extrusion.- 6.5.4. Forging.- 6.6. Friction and Normal Stress Distributions in Various Metal-Forming Processes.- 6.6.1. Upsetting.- 6.6.2. Extrusion.- 6.6.3. Rolling.- References.- 7. Selection of Tool Materials.- 7.1. Introduction.- 7.2. Required Properties of Metal-Forming Tooling.- 7.3. Steels.- 7.3.1. Conventional Tool Steels.- 7.3.2. Hot-Work Steels.- 7.3.3. Cold-Work Tool Steels.- 7.3.4. High-Speed Steels.- 7.3.5. Other Steels.- 7.3.6. Improved Properties in Conventional Tool Steels.- 7.4. Near Net Shape Tooling.- 7.5. Cemented Carbide.- 7.6. Ceramic and Ultra Hard Tool Materials.- 7.6.1. Aluminium Oxide, A1203.- 7.6.2. Silicon Nitride, Si3N4.- 7.6.3. Partially Stabilised Zirconia (PSZ).- 7.6.4. Polycrystalline Diamond.- 7.7. Titanium Carbide: High-Speed Steels.- 7.8. Surface Treatments and Coatings on Tool Materials.- 7.8.1. Introduction.- 7.8.2. Conventional Surface Treatment Processes.- 7.8.3. Saltbath and Pack Processes.- 7.8.4. Gas Processes.- 7.8.5. Weld Surfacing and Flame Spraying.- 7.8.6. Plating Based Coating Systems.- 7.8.7. Recent Advances in Coating Processes.- 7.8.8. Relative Performance of Surface Coating.- 7.9. Concluding Remarks.- References.- 8. Computer Design.- 8.1. Introduction.- 8.2. Computer-Integrated Manufacturing.- 8.3. Computer-Aided Design: A Review.- 8.3.1. Solid Modelling Systems.- 8.4. Computer-Aided Manufacture.- 8.5. Applications of Solid Modelling.- 8.5.1. Current Industrial Use of Solid Modelling.- 8.5.2. Solid Modelling Research.- 8.6. Conclusion.- References.