Differential Equations And Linear Algebra by C. Henry EdwardsDifferential Equations And Linear Algebra by C. Henry Edwards

Differential Equations And Linear Algebra

byC. Henry Edwards, David E. Penney, David Calvis

Hardcover | January 4, 2017

Pricing and Purchase Info

$203.95

Earn 1,020 plum® points

Prices and offers may vary in store

Out of stock online

Not available in stores

about

For courses in Differential Equations and Linear Algebra .

 

Concepts, methods, and core topics covering elementary differential equations and linear algebra through real-world applications

In a contemporary introduction to differential equations and linear algebra, acclaimed authors Edwards and Penney combine core topics in elementary differential equations with concepts and methods of elementary linear algebra. Renowned for its real-world applications and blend of algebraic and geometric approaches, Differential Equations and Linear Algebra introduces you to mathematical modeling of real-world phenomena and offers the best problems sets in any differential equations and linear algebra textbook. The 4th Edition includes fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. Additionally, an Expanded Applications website containing expanded applications and programming tools is now available.

C. Henry Edwards is emeritus professor of mathematics at the University of Georgia. He earned his Ph.D. at the University of Tennessee in 1960, and recently retired after 40 years of classroom teaching (including calculus or differential equations almost every term) at the universities of Tennessee, Wisconsin, and Georgia, with a bri...
Loading
Title:Differential Equations And Linear AlgebraFormat:HardcoverDimensions:768 pages, 10.3 × 8.35 × 1.7 inPublished:January 4, 2017Publisher:Pearson EducationLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:013449718X

ISBN - 13:9780134497181

Reviews

Table of Contents

1. First-Order Differential Equations

1.1 Differential Equations and Mathematical Models

1.2 Integrals as General and Particular Solutions

1.3 Slope Fields and Solution Curves

1.4 Separable Equations and Applications

1.5 Linear First-Order Equations

1.6 Substitution Methods and Exact Equations

 

2. Mathematical Models and Numerical Methods

2.1 Population Models

2.2 Equilibrium Solutions and Stability

2.3 Acceleration–Velocity Models

2.4 Numerical Approximation: Euler's Method

2.5 A Closer Look at the Euler Method

2.6 The Runge–Kutta Method

 

3. Linear Systems and Matrices

3.1 Introduction to Linear Systems

3.2 Matrices and Gaussian Elimination

3.3 Reduced Row-Echelon Matrices

3.4 Matrix Operations

3.5 Inverses of Matrices

3.6 Determinants

3.7 Linear Equations and Curve Fitting

 

4. Vector Spaces

4.1 The Vector Space R 3

4.2 The Vector Space R n and Subspaces

4.3 Linear Combinations and Independence of Vectors

4.4 Bases and Dimension for Vector Spaces

4.5 Row and Column Spaces

4.6 Orthogonal Vectors in R n

4.7 General Vector Spaces

 

5. Higher-Order Linear Differential Equations

5.1 Introduction: Second-Order Linear Equations

5.2 General Solutions of Linear Equations

5.3 Homogeneous Equations with Constant Coefficients

5.4 Mechanical Vibrations

5.5 Nonhomogeneous Equations and Undetermined Coefficients

5.6 Forced Oscillations and Resonance

 

6. Eigenvalues and Eigenvectors

6.1 Introduction to Eigenvalues

6.2 Diagonalization of Matrices

6.3 Applications Involving Powers of Matrices

 

7. Linear Systems of Differential Equations

7.1 First-Order Systems and Applications

7.2 Matrices and Linear Systems

7.3 The Eigenvalue Method for Linear Systems

7.4 A Gallery of Solution Curves of Linear Systems

7.5 Second-Order Systems and Mechanical Applications

7.6 Multiple Eigenvalue Solutions

7.7 Numerical Methods for Systems

 

8. Matrix Exponential Methods

8.1 Matrix Exponentials and Linear Systems

8.2 Nonhomogeneous Linear Systems

8.3 Spectral Decomposition Methods

 

9. Nonlinear Systems and Phenomena

9.1 Stability and the Phase Plane

9.2 Linear and Almost Linear Systems

9.3 Ecological Models: Predators and Competitors

9.4 Nonlinear Mechanical Systems

 

10. Laplace Transform Methods

10.1 Laplace Transforms and Inverse Transforms

10.2 Transformation of Initial Value Problems

10.3 Translation and Partial Fractions

10.4 Derivatives, Integrals, and Products of Transforms

10.5 Periodic and Piecewise Continuous Input Functions

 

11. Power Series Methods

11.1 Introduction and Review of Power Series

11.2 Power Series Solutions

11.3 Frobenius Series Solutions

11.4 Bessel Functions

 

Appendix A: Existence and Uniqueness of Solutions

Appendix B: Theory of Determinants

 

 

APPLICATION MODULES

The modules listed below follow the indicated sections in the text. Most provide computing projects that illustrate the corresponding text sections. Many of these modules are enhanced by the supplementary material found at the new Expanded Applications website.

 

1.3 Computer-Generated Slope Fields and Solution Curves

1.4 The Logistic Equation

1.5 Indoor Temperature Oscillations

1.6 Computer Algebra Solutions

2.1 Logistic Modeling of Population Data

2.3 Rocket Propulsion

2.4 Implementing Euler's Method

2.5 Improved Euler Implementation

2.6 Runge-Kutta Implementation

3.2 Automated Row Operations

3.3 Automated Row Reduction

3.5 Automated Solution of Linear Systems

5.1 Plotting Second-Order Solution Families

5.2 Plotting Third-Order Solution Families

5.3 Approximate Solutions of Linear Equations

5.5 Automated Variation of Parameters

5.6 Forced Vibrations and Resonance

7.1 Gravitation and Kepler's Laws of Planetary Motion

7.3 Automatic Calculation of Eigenvalues and Eigenvectors

7.4 Dynamic Phase Plane Graphics

7.5 Earthquake-Induced Vibrations of Multistory Buildings

7.6 Defective Eigenvalues and Generalized Eigenvectors

7.7 Comets and Spacecraft

8.1 Automated Matrix Exponential Solutions

8.2 Automated Variation of Parameters

9.1 Phase Portraits and First-Order Equations

9.2 Phase Portraits of Almost Linear Systems

9.3 Your Own Wildlife Conservation Preserve

9.4 The Rayleigh and van der Pol Equations