Discrete Stochastics by Konrad JacobsDiscrete Stochastics by Konrad Jacobs

Discrete Stochastics

byKonrad Jacobs

Paperback | October 29, 2012

Pricing and Purchase Info

$116.29 online 
$137.95 list price save 15%
Earn 581 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Discrete stochastics is the theory of discrete probability spaces. This undergraduate textbook gives a concise introduction into discrete stochastics in general, and into a variety of typical special topics in this field, such as information theory, fluctuation theory, and semigroups of stochastic matrices. The emphasis lies on probability theory rather than on statistical methodology. Motivations, interpretations, and numerous examples and exercises relate the mathematical theory to stochastic experience.

Title:Discrete StochasticsFormat:PaperbackDimensions:283 pagesPublished:October 29, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034897138

ISBN - 13:9783034897136

Look for similar items by category:


Table of Contents

I. Introduction.- 1. Encountering Random.- 2. Specimens of Stochastic Reasoning.- II. Markovian Dynamics.- 1. Finite-state Markovian dynamical systems.- 2. The convex set of stochastic matrices.- 3. The asymptotic behavior of Pn: some special cases.- 4. Asymptotic behavior of P, P2,...: the method of invariant sets.- III. Discrete Probability Spaces.- 1. The Notion of a Discrete Probability Space (DPS).- 2. Obtaining New Probability Spaces from Given Ones.- 3. Independence.- IV. Independent Identically Distributed (IID) Random Variables.- 1. Addition of independent RVs.- 2. Expectation and Variance.- 3. The Weak Law of Large Numbers (WLLN).- 4. The Central Limit Theorem (CLT) I.- 5. The Central Limit Theorem (CLT) II.- 6. Outlook.- V. Statistics.- 1. Specimens of Statistical Reasoning.- 2. The Game-Theoretical Framework of Statistical Theory.- 3. Tests.- 4. Outlook.- VI. Markov Processes.- 1. Conditional Probabilities.- 2. Markov Processes.- VII. Elements of Information Theory.- 1. Combinatorial and Algebraic Coding Theory.- 2. Source Coding.- 3. Noisy Channels.- VIII. Fluctuation Theory.- 1. The Combinatorial Arcsin Law of Erik Sparre Andersen.- 2. Arcsin.- 3. Symmetrically Distributed Random Variables.- 4. Fluctuations of Random Walks.- 5. The Andersen-Spitzer Formula.- 6. Outlook.- IX. Optimal Strategies in Casinoes: Red and Black.- 1. Strategies and Their Probability of Success.- 2. Some Properties of BOLD.- 3. The Optimality of BOLD for p ? 1/2 ? r.- 4. Non-Optimality of BOLD if p ? 1/2 ? r Fails.- X. Foundational Problems.- 1. The Theory of Randomness.- 2. Subjective Probabilities.- 3. Belief ("bel") Functions.- Appendix A: The Marriage Theorem.- Appendix B: Markovian Semigroups.- Appendix C: One-parameter semigroups of stochastic matrices.