Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-agent Systems by Makoto YokooDistributed Constraint Satisfaction: Foundations of Cooperation in Multi-agent Systems by Makoto Yokoo

Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-agent Systems

byMakoto Yokoo

Paperback | October 2, 2011

Pricing and Purchase Info

$108.12 online 
$117.50 list price save 7%
Earn 541 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

When multiple agents are in a shared environment, there usually exist con­ straints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem in which the goal is to find a consistent combination of actions that satisfies these inter-agent constraints. More specifically, a distributed CSP is a constraint satisfaction problem (CSP) in which multiple agents are involved. A constraint satisfaction problem is a problem in which the goal is to find a consistent assignment of values to variables. Even though the definition of a CSP is very simple, a surprisingly wide variety of artificial intelligence (AI) problems can be formalized as CSPs. Therefore, the research on CSPs has a long and distinguished history in AI (Mackworth 1992; Dechter 1992; Tsang 1993; Kumar 1992). A distributed CSP is a CSP in which variables and constraints are distributed among multiple autonomous agents. Various application problems in Multi-agent Systems (MAS) that are concerned with finding a consistent combination of agent actions can he formalized as dis­ tributed CSPs. Therefore, we can consid(<_r20_distributed20_csps20_as20_a20_general20_framework20_for20_mas2c_20_and20_algorithms20_for20_solving20_distributed20_csps20_as20_imporc2ad_20_tant20_infrastructures20_for20_cooperation20_in20_mas.20_this20_book20_gives20_an20_overview20_of20_the20_research20_on20_distributed20_csps2c_20_as20_well20_as20_introductory20_material20_on20_csps.20_in20_chapter20_1.20_we20_show20_the20_problem20_defic2ad_20_nition20_of20_normal2c_20_centralized20_csps20_and20_describe20_algorithms20_for20_solving20_csps. distributed="" csps="" as="" a="" general="" framework="" for="" _mas2c_="" and="" algorithms="" solving="" _imporc2ad_="" tant="" infrastructures="" cooperation="" in="" mas.="" this="" book="" gives="" an="" overview="" of="" the="" research="" on="" _csps2c_="" well="" introductory="" material="" csps.="" chapter="" 1.="" we="" show="" problem="" _defic2ad_="" nition="" _normal2c_="" centralized="" describe="">
Title:Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-agent SystemsFormat:PaperbackDimensions:143 pagesPublished:October 2, 2011Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3642640206

ISBN - 13:9783642640209

Look for similar items by category:

Reviews

Table of Contents

1. Constraint Satisfaction Problem.- 1.1 Introduction.- 1.2 Problem Definition.- 1.3 Algorithms for Solving CSPs.- 1.3.1 Backtracking.- 1.3.2 Iterative Improvement.- 1.3.3 Consistency Algorithms.- 1.4 Hybrid-Type Algorithm of Backtracking and Iterative Improvement.- 1.4.1 Weak-Commitment Search Algorithm.- 1.4.2 Example of Algorithm Execution.- 1.4.3 Evaluations.- 1.4.4 Algorithm Complexity.- 1.5 Analyzing Landscape of CSPs.- 1.5.1 Introduction.- 1.5.2 Hill-Climbing Algorithm.- 1.5.3 Analyzing State-Space.- 1.5.4 Discussions.- 1.6 Partial Constraint Satisfaction Problem.- 1.6.1 Introduction.- 1.6.2 Formalization.- 1.6.3 Algorithms.- 1.7 Summary.- 2. Distributed Constraint Satisfaction Problem.- 2.1 Introduction.- 2.2 Problem Formalization.- 2.3 Application Problems.- 2.3.1 Recognition Problem.- 2.3.2 Allocation Problem.- 2.3.3 Multi-agent Truth Maintenance.- 2.3.4 Time-Tabling/Scheduling Tasks.- 2.4 Classification of Algorithms for Solving Distributed CSPs.- 2.5 Summary.- 3. Asynchronous Backtracking.- 3.1 Introduction.- 3.2 Assumptions.- 3.3 Simple Algorithms.- 3.3.1 Centralized Method.- 3.3.2 Synchronous Backtracking.- 3.4 Asynchronous Backtracking Algorithm.- 3.4.1 Overview.- 3.4.2 Characteristics of the Asynchronous Backtracking Algorithm.- 3.4.3 Example of Algorithm Execution.- 3.4.4 Algorithm Soundness and Completeness.- 3.5 Evaluations.- 3.6 Summary.- 4. Asynchronous Weak-Commitment Search.- 4.1 Introduction.- 4.2 Basic Ideas.- 4.3 Details of Algorithm.- 4.4 Example of Algorithm Execution.- 4.5 Algorithm Completeness.- 4.6 Evaluations.- 4.7 Summary.- 5. Distributed Breakout.- 5.1 Introduction.- 5.2 Breakout Algorithm.- 5.3 Basic Ideas.- 5.4 Details of Algorithm.- 5.5 Example of Algorithm Execution.- 5.6 Evaluations.- 5.7 Discussions.- 5.8 Summary.- 6. Distributed Consistency Algorithm.- 6.1 Introduction.- 6.2 Overview of Distributed ATMS.- 6.2.1 ATMS.- 6.2.2 Distributed ATMS.- 6.3 Distributed Consistency Algorithm Using Distributed ATMS..- 6.4 Example of Algorithm Execution.- 6.5 Evaluations.- 6.6 Summary.- 7. Handling Multiple Local Variables.- 7.1 Introduction.- 7.2 Agent-Prioritization Approach.- 7.3 Asynchronous Weak-Commitment Search with Multiple Local Variables.- 7.3.1 Basic Ideas.- 7.3.2 Details of Algorithm.- 7.3.3 Example of Algorithm Execution.- 7.4 Evaluations.- 7.5 Summary.- 8. Handling Over-Constrained Situations.- 8.1 Introduction.- 8.2 Problem Formalization.- 8.3 Distributed Maximal CSPs.- 8.3.1 Problem Formalization.- 8.3.2 Algorithms.- 8.3.3 Evaluations.- 8.4 Distributed Hierarchical CSPs.- 8.4.1 Problem Formalization.- 8.4.2 Asynchronous Incremental Relaxation.- 8.4.3 Example of Algorithm Execution.- 8.4.4 Algorithm Completeness.- 8.4.5 Evaluations.- 8.5 Summary.- 9. Summary and Future Issues.