Earthquake Disaster Simulation Of Civil Infrastructures: From Tall Buildings To Urban Areas by Xinzheng LuEarthquake Disaster Simulation Of Civil Infrastructures: From Tall Buildings To Urban Areas by Xinzheng Lu

Earthquake Disaster Simulation Of Civil Infrastructures: From Tall Buildings To Urban Areas

byXinzheng Lu, Hong Guan

Paperback | July 14, 2018

Pricing and Purchase Info

$293.81 online 
$312.50 list price save 5%
Earn 1,469 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Based on more than 12 years of systematic investigation on earthquake disaster simulation of civil infrastructures, this book covers the major research outcomes including a number of novel computational models, high performance computing methods and realistic visualization techniques for tall buildings and urban areas, with particular emphasize on collapse prevention and mitigation in extreme earthquakes, earthquake loss evaluation and seismic resilience. Typical engineering applications to several tallest buildings in the world (e.g., the 632 m tall Shanghai Tower and the 528 m tall Z15 Tower) and selected large cities in China (the Beijing Central Business District, Xi'an City, Taiyuan City and Tangshan City) are also introduced to demonstrate the advantages of the proposed computational models and techniques.

The high-fidelity computational model developed in this book has proven to be the only feasible option to date for earthquake-induced collapse simulation of supertall buildings that are higher than 500 m. More importantly, the proposed collapse simulation technique has already been successfully used in the design of some real-world supertall buildings, with significant savings of tens of thousands of tons of concrete and steel, whilst achieving a better seismic performance and safety.

The proposed novel solution for earthquake disaster simulation of urban areas using nonlinear multiple degree-of-freedom (MDOF) model and time-history analysis delivers several unique advantages: (1) true representation of the characteristic features of individual buildings and ground motions; (2) realistic visualization of earthquake scenarios, particularly dynamic shaking of buildings during earthquakes; (3) detailed prediction of seismic response and losses on each story of every building at any time period. The proposed earthquake disaster simulation technique has been successfully implemented in the seismic performance assessments and earthquake loss predictions of several central cities in China. The outcomes of the simulation as well as the feedback from the end users are encouraging, particularly for the government officials and/or administration department personnel with limited professional knowledge of earthquake engineering.

The book offers readers a systematic solution to earthquake disaster simulation of civil infrastructures. The application outcomes demonstrate a promising future of the proposed advanced techniques. The book provides a long-awaited guide for academics and graduate students involving in earthquake engineering research and teaching activities. It can also be used by structural engineers for seismic design of supertall buildings.

div>Prof. Xinzheng Lu obtained his BS and PhD degrees from Tsinghua University of China. He started his academic career in 2005 as an Assistant Professor at the same university. He was subsequently promoted to Associate Professor in December 2007, Head of the Institute of Disaster Prevention and Mitigation in 2010 and Full Professor in...
Title:Earthquake Disaster Simulation Of Civil Infrastructures: From Tall Buildings To Urban AreasFormat:PaperbackDimensions:440 pagesPublished:July 14, 2018Publisher:Springer NatureLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9811097860

ISBN - 13:9789811097867


Table of Contents

Introduction.- High fidelity computational models for seismic simulation of tall buildings.- High performance computing and visualization for seismic simulation of tall buildings.- Seismic disaster simulation of typical super tall buildings.- Engineering application of seismic disaster simulation of supertall buildings.- Comparison of the seismic design and performance of tall buildings in China and USA.- Nonlinear MDOF models for seismic simulation of urban buildings.- Visualization of urban building seismic simulation.- High performance computing for urban building seismic simulation.- Seismic disaster simulation of typical urban areas.- Earthquake loss prediction for typical urban areas.