Field Models in Electricity and Magnetism by Paolo Di BarbaField Models in Electricity and Magnetism by Paolo Di Barba

Field Models in Electricity and Magnetism

byPaolo Di Barba, Antonio Savini, Slawomir Wiak

Paperback | October 19, 2010

Pricing and Purchase Info

$177.94 online 
$206.95 list price save 14%
Earn 890 plum® points

In stock online

Ships free on orders over $25

Not available in stores


Covering the development of field computation in the past forty years, this book is a concise, comprehensive and up-to-date introduction to methods for the analysis and synthesis of electric and magnetic fields. A broad view of the subject of field models in electricity and magnetism, ranging from basic theory to numerical applications, is offered. The approach throughout is to solve field problems directly from partial differential equations in terms of vector quantities.
Title:Field Models in Electricity and MagnetismFormat:PaperbackDimensions:184 pages, 9.25 × 6.1 × 0 inPublished:October 19, 2010Publisher:Springer NetherlandsLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9048177359

ISBN - 13:9789048177356

Look for similar items by category:

Table of Contents

1 Introduction.2 Vector fields. 2.1 Basic operators and equations. 2.2 Electrostatic field. 2.3 Magnetostatic field. 2.4 Steady conduction field. 3 Analytical methods for solving boundary-value problems. 3.1 Method of Green's functions. 3.2 Method of images. 3.3 Method of separation of variables.4 Numerical methods for solving boundary-value problems. 4.1 Variational formulation in magnetostatics. 4.2 Finite elements for two-dimensional magnetostatics. 4.3 Finite elements for three-dimensional magnetostatics.5 Time-varying electromagnetic field. 5.1 Maxwell's equations in differential form. 5.2 Poynting's vector. 5.3 Maxwell's equations in frequency domain. 5.4 Plane waves in an infinite domain. 5.5 Wave and diffusion equations in terms of vectors E and H. 5.6 Wave and diffusion equations in terms of scalar and vector potentials. 5.7 Electromagnetic field radiated by an oscillating dipole. 5.8 Diffusion equations in terms of dual potentials. 5.9 Weak eddy current in a conducting plane under a.c. conditions. 5.10 Strong eddy current in a conducting plane under a.c. conditions. 5.11 Eddy current in a cylindrical conductor under step excitation current. 5.12 Electromagnetic field equations in different reference frames.6 Inverse problems. 6.1 Direct and inverse problems. 6.2 Well-posed and ill-posed problems. 6.3 Fredholm's integral equation of the first kind. 6.4 Case study: synthesis of magnetic field sources. 6.5 Under- and over-determined systems of equations. 6.6 Least-squares solution. 6.7 Classification of inverse problems.7 Optimization. 7.1 Solution of inverse problems by the minimization of a functional. 7.2 Constrained optimization. 7.3 Multiobjective optimization. 7.4 Gradient-free and gradient-based methods. 7.5 Deterministic vs non-deterministic search. 7.6 A deterministic algorithm of lowest order: simplex method. 7.7 A non-deterministic algorithm of lowest order: evolution strategy. 7.8 Numerical case studies.8 Conclusion. References. Acknowledgements. APPENDIX.