Gas Separation Membranes: Polymeric and Inorganic by Ahmad Fauzi IsmailGas Separation Membranes: Polymeric and Inorganic by Ahmad Fauzi Ismail

Gas Separation Membranes: Polymeric and Inorganic

byAhmad Fauzi Ismail, Kailash Chandra Khulbe, Takeshi Matsuura

Hardcover | May 12, 2015

Pricing and Purchase Info

$182.83 online 
$220.95 list price save 17%
Earn 914 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


This book describes the tremendous progress that has been made in the development of  gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials,  zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications.  The book is concluded with some perspectives about the future direction of the field.

Professor Ahmad Fauzi Ismail is the Founding Director of Advanced Membrane Technology Research Center (AMTEC) and also the Dean of Research for Materials and Manufacturing Research Alliance of Universiti Teknologi Malaysia (UTM). Professor Fauzi obtained a PhD. in Chemical Engineering in 1997 from University of Strathclyde and MSc. and...
Title:Gas Separation Membranes: Polymeric and InorganicFormat:HardcoverDimensions:331 pagesPublished:May 12, 2015Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3319010948

ISBN - 13:9783319010946

Look for similar items by category:


Table of Contents

1. Introduction
1.1 Membrane Separation Processes
1.2 Membrane-based Gas Separation
1.2.1 Historical background
1.2.2 Scientific and Commercial Development of Membrane Process
1.3 Advantages of Membrane Processes

2. Fundamentals of Gas Permeation through Membranes
2.1 Gas Permeation through Membranes
2.1.1 Technical terms used in Gas Separation Membrane Science
2.1.2 Membrane Separation Principles
2.1.3 Gas Permeation through Porous Membranes
2.1.4 Gas Permeation through Nonporous Membranes
2.1.5 Gas Permeation through Asymmetric Membranes
2.2 Diffusion Theory of Small Molecules in Nonporous Polymer  Membranes
2.3 Diffusion Models for Rubbery Polymers
2.4 Diffusion Models for Glassy Polymers
2.5 General Membrane Transport Equations
2.6 Models for Gas Transport in Nanocomposite Membranes
2.7 Facilitated Transport Membranes

3. Gas Separation Membrane Materials and Structures
3.1 Membrane Materials for Gas Separation
3.1.1 Polymeric membranes Silicon rubber
3.1,1.2 Cellulose acetate Polycarbonate Poly(nonborene) Poly(2,6-dimethyl-1,4-diphenyl oxide) (PPO) Polyimides Polyetherimide Perfluoropolymers Poly(ether ether ketone) (PEEK) Polyurethane (PU) Polyaniline (PANi) Polysulfones (PSf) and polyether sulfones (PES) Polybenzimidazole (PBI) Polyvinylidene fluoride Poly(1-trimethylsilyl-1-propyne) (PTMSP) Polysaccharide Cellulose Chitosan Polyvinyl alcohol (PVA)
3.1.2 Copolymers and polymer blends
3.1.3 Other polymers Polymers of intrinsic microporosity (PIMS) Cross-linking of polymers and other technique for modification
3.2 Inorganic Membranes3.2.1 Ceramic membranes
3.2.2 Silica glass membranes
3.2.3 Zeolite Preparation of zeolite memberation by crystallization and seeding LTA zeolite NaA zeolite DDR type zeolite SAPO-34 AIPO-18. Beta zeolite or ZSM zeolite (MFI zeolite membranes(ZSM 5)) FAU-type zeolite Hydroxy-sodalite zeolite membrane (HDS-zeolite) Zeolite T Zeolite L ITQ-29 zeolite UZM zeolite Zeolite W Zeolite imidazole frameworks (ZIFs) Hierarchical zeolite Other zeolitic type or ceramic/ inorganic membranes
3.3 Metal-Organic Framework Membranes for gas separations
3.4 Mixed Matrix Membranes
3.4.1 Preparation of nanocomposite membranes
3.5 Other Materials
3.5.1 Metallic membranes
3.5.2 Carbon Based Membranes Carbon molecular sieve membranes (MSCMs).and adsorption selective carbon membranes (ASCM ) Carbon Nanotube Graphene
3.6 Gas Separation Membrane Structures
3.6.1 Homogeneous dense membranes
3.6.2 Asymmetric membranes Integrally skinned bilayer membranes Integrally skinned trilayer membranes Thin film composite membranes
4. Membrane Fabrication/Manufacturing Techniques
4.1 Polymeric Membranes Preparation
4.1.1 Phase inversion membranes Precipitation by solvent evaporation Preparation of hollow fiber membranes Methods for spinning
4.1.2 Thermally induced phase separation (TIPS)
4.1.3 Other techniques Coating Interfacial polymerization Plasma polymerization Graft polymerization Particle leaching Track Etching
4.1.4 Poly electrolyte multilayer membranes
4.2 Inorganic Membranes
4.2.1 Preparation of inorganic membranes Chemical vapor deposition Thin layer metallic membranes  
4.2.2 Silica membranes
4.3 Composite Membrane Preparation - Mixed Matrix Membranes
4.4 Preparation of Metal-Organic Frameworks membranes (MOFs)
4.4.1 Growth/Deposition from solvothermal mother solutions
4.4.2 Microwave-induced thermal deposition (MITD)
4.4.3 Stepwise layer-by-layer growth onto the substrate.
4.4.4 Electrochemical deposition of thin MOF-films on metal substrates
4.4.5 Deposition of MOF thin films using a gel-layer approach
4.5 Ultrathin Membranes

5 Membrane Modules and Process Design
5.1 Membrane Modules
5.1.1 Plate and frame
5.1.2 Spiral Wound
5.1.3 Tubular
5.1.4 Capillary
5.1.5 Hollow Fiber
5.1.6 Membrane Contactors
5.2 Comparison of the Module Configuration
5.3 System Design
5.4 Process Parameter
5.5 Gas and Vapor Permeation
5.6 Energy Requirements

6.Application of Gas Separation Membranes
6.1 Large-Scale Applications
6.1.1 Air separation (nitrogen and oxygen production)
6.1.2 Hydrogen recovery
6.1.3 Acid gas removal from natural gas
6.1.4 Hydrocarbon/Carbon monoxide separation
6.1.5 Vapor permeation /pervaporation gas separation
6.2 Present and Emerging Large-Scale Applications of Membrane Technology
6.3 Dew-pointing of Natural Gas
6.4 Olefin-paraffin Separations
6.5 Membrane/Pressure Swing Adsorption Process
6.6 Membrane/Distillation Process
6.7 Membrane contactor

7. Characterization of Membranes
7.1 Introduction
7.2 Mass Transport
7.3 Membrane Morphology
7.3.1 Microscopic Method
3.1.1 Atomic force microscopy Electron spectroscopy for chemical analysis (ESCA) and   scanning electron microscopy (SEM)
7.3.2  Spectroscopy Method Infrared (IR) and Fourier transform infrared (FTIR) spectroscopy Positron annihilation spectroscopy (PAL) X-ray analysis and wide angle x-ray scattering (WAXS) X-ray photoelectron spectroscopy (XPS) Small angle neutron scattering (SANS) Raman spectroscopy (RS) Small angle neutron scattering (SANS) Raman spectroscopy (RS) Electron spinning resonance (ESR) Nuclear magnetic resonance (NMR)
7.4 Other Techniques
7.4.1 Optical technique
7.5 Thermal Properties
7.5.1 Differential scanning calorimeter (DSC) and differential thermal analysis (DTA)
7. 6 Mechanic Properties
7.6.1 Tensile strength
7.6.2 Young's modulus or tensile modulus of elasticity

Editorial Reviews

"This book is one that addresses gas separation membranes as a separate entity from other membranes in application, while including information still pertinent to general membrane separation studies. Chemists, material scientists, chemical engineers, mechanical engineers, energy engineers, and process designers engaged in gas separations will all find value in this book. . this book is a valuable resource for new researchers, and a decent reference for mature researchers in the field of gas phase membrane separations." (Jeremy Lewis, Chemical Engineering Education, Vol. 52 (3), 2018)