General Inequalities 7: 7th International Conference at Oberwolfach, November 13-18, 1995 by Catherine BandleGeneral Inequalities 7: 7th International Conference at Oberwolfach, November 13-18, 1995 by Catherine Bandle

General Inequalities 7: 7th International Conference at Oberwolfach, November 13-18, 1995

byCatherine BandleEditorWilliam N. Everitt, Laszlo Losonczi

Paperback | October 13, 2012

Pricing and Purchase Info


Earn 1,035 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Inequalities continue to play an essential role in mathematics. The subject is per­ haps the last field that is comprehended and used by mathematicians working in all the areas of the discipline of mathematics. Since the seminal work Inequalities (1934) of Hardy, Littlewood and P6lya mathematicians have laboured to extend and sharpen the earlier classical inequalities. New inequalities are discovered ev­ ery year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. So extensive are these developments that a new mathematical periodical devoted exclusively to inequalities will soon appear; this is the Journal of Inequalities and Applications, to be edited by R. P. Agar­ wal. Nowadays it is difficult to follow all these developments and because of lack of communication between different groups of specialists many results are often rediscovered several times. Surveys of the present state of the art are therefore in­ dispensable not only to mathematicians but to the scientific community at large. The study of inequalities reflects the many and various aspects of mathemat­ ics. There is on the one hand the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand the subject is a source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are many applications in a wide variety of fields from mathematical physics to biology and economics.
Title:General Inequalities 7: 7th International Conference at Oberwolfach, November 13-18, 1995Format:PaperbackDimensions:404 pages, 23.5 × 15.5 × 0.02 inPublished:October 13, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034898371

ISBN - 13:9783034898379


Table of Contents

Inequalities in Analysis.- Higher dimensional Hardy inequality.- Integral inequalities for algebraic polynomials.- Inequalities of Gauß-Minkowski type.- Natural norm inequalities in nonlinear transforms.- Inequalities for Matrices and Discrete Problems.- Positive definiteness of discrete quadratic functionals.- Stable norms - Examples and remarks.- Applications of order preserving inequalities to a generalized relative operator entropy.- The arithmetic mean - the geometric mean and related matrix inequalities.- Inequalities for Eigenvalue Problems.- Inequalities for the first eigenvalues of the clamped plate and buckling problems.- One the Payne-Pólya-Weinberger conjecture on the n-dimensional sphere.- Norm eigenvalue bounds for some Sturm-Liouville problems.- Discontinuous dependence of the n-th Sturm-Liouville problem.- Inequalities for Differential Operators.- Note on Wirtinger's inequality.- Opial-type inequalities involving higher order partial derivatives of two functions.- The HELP type integral inequalities for 2nth order differential operators.- An estimate related to the Gagliardo-Nirenberg inequality.- Sobolev inequalities in 2-dimensional hyperbolic space.- Convexity.- On the separation with n-additive functions.- Convexity of power functions with respect to symmetric homogeneous means.- Convex functions with respect to an arbitrary mean.- Separation by semidefinite bilinear forms.- Inequalities in Functional Analysis and Functional Equations.- Inequalities for selection probabilities.- Delta-exponential mappings in Banach algebras.- On a problem of S.M. Ulam and the asymptotic stability of the Cauchy functional equation with applications.- Die Funktionalgleichung $$ f(x) + \max \left\{ {f(y),\,f\left( { - y} \right)} \right\} = \max \left\{ {f\left( {x + y} \right),\,y\left( {x - y} \right)} \right\} $$.- Applications.- Asymptotic analysis of nonlinear thin layers.- The opaque square and the opaque circle.- Enclosure methods with existence proof for elliptic differential equations.- Weak persistence in Lotka-Volterra populations.- Uniqueness for degenerate elliptic equations via Serrin's principle.- Problems and Remarks.- Overdetermined Hardy inequalities.- A condition for monotony.- A conjectured inequality of T.J. Lyons.- A theorem of Pommerenke and a conjecture of Erd?s.- Problems on finite sums decompositions of functions.