Geometric Structures: An Inquiry-Based Approach for Prospective Elementary and Middle School Teachers by Douglas B. AicheleGeometric Structures: An Inquiry-Based Approach for Prospective Elementary and Middle School Teachers by Douglas B. Aichele

Geometric Structures: An Inquiry-Based Approach for Prospective Elementary and Middle School…

byDouglas B. Aichele, John Wolfe

Paperback | April 9, 2007

Pricing and Purchase Info


Earn 707 plum® points

Prices and offers may vary in store

Out of stock online

Not available in stores


This text provides a creative, inquiry-based experience with geometry that is appropriate for prospective elementary and middle school teachers.  The coherent series of text activities supports each student’s growth toward being a confident, independent learner empowered with the help of peers to make sense of the geometric world. This curriculum is explicitly developed to provide future elementary and middle school teachers.
John Wolfe, Oklahoma State University: John recently was promoted to professor emeritus at Oklahoma State University. After graduating from the University of California at Berkeley in 1971 he was active in mathematics research including several publications and National Science Foundation research grants in Banach Space Theory. His en...
Title:Geometric Structures: An Inquiry-Based Approach for Prospective Elementary and Middle School…Format:PaperbackDimensions:688 pages, 10.85 × 8.55 × 2.85 inPublished:April 9, 2007Publisher:Pearson EducationLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0131483927

ISBN - 13:9780131483927


Table of Contents

Part I: Paper Folding

Chapter 0 - Warm Up Activities

0.0 Introduction

0.1 Folding Polygons from a Circle

0.2 Making Squares

0.3 Two Congruent Halves

0.4 Dissecting Figures

Chapter 1 - Polygons and the Angle Relationships

1.0 Introduction

1.1 Parallel Line Grid - Triangle Angle Sum

1.2 Envelope Fold - Triangle Angle Sum

1.3 Triangle and Quadrilateral Angle Sums by Tearing

1.4 Polygon Angle Sums: How many Triangles?

1.5 The Angles of a Polygon

1.6 When Does Erika's Idea Work?

1.7 The Greedy Triangle

1.8 Problems: Angle Sums and Angle Relationships

1.9 Four Kinds of Related Angles

1.10 Figuring Angles and Checking by Measurement

1.11 Parallel Lines: How to Recognize Them

1.12 Measuring Sides and Angles of Triangles

1.14 Convex: Different Ways to Make Sense of It

1.14a Angle Problems - Version A

1.14b Angle Problems - Version B

1.15 Angle Probems - More

1.16 How Do I Know if I Understand?

1.17 Conjecturing ABout Quadrilaterals

1.18 Possible or Not?

1.19 True or False (with Example)

1.20 Under What Conditions?


Chapter 2 - Quadrilaterals and Their Definitions

2.0 Introduction

2.1 Checking Properties of Quadrilaterals

2.2 Properties of Quadrilaterals

2.3 Marking Quadrilateral Properties

2.4 Properties of Diagonals of Quadrilaterals

2.5 Checking Quadrilaterals by Folding

2.6 Read Carefully: Every Word Counts!

2.7 Checking Examples Visually or Physically

2.8 Exploring Medial Quadrilaterals

2.9a Problems: Properties of Quadrilaterals, Version A

2.9b Problems: Properties of Quadrilaterals, Version B

2.10 More Problems: Properties of Quadrilaterals

2.11 A Deeper Understanding of Definitions

2.12 Special Cases of Quadrilaterals

2.13 Definitions: Inclusive or Exclusive

2.14 Problems: Inclusive and Exclusive Definitions

2.15 What Is a Kite? Equivalent Definitions

2.16a Problems: Definitions of Quadrilaterals, Version A

2.16b Problems: Definitions of Quadrilaterals, Version B

2.17 More Problems: Definitions of Quadrilaterals

2.18 How Do I Know if I Understand?



Four Contexts for Geometric Constructions

Prologue to Chapters 3, 10, 12, and 14


Chapter 3 - Constructions by Paper Folding

3.0 Introduction

3.1 Introducing CDs: Two Basic Constructions

3.2 CD Problem: A Parallel Line

3.3 CD Problem: The Median

3.4 CD Problem: An Equilateral Triangle

3.5 CD Problem: A Square

3.6 Circumscribing Circle

3.7 Inscribed Circle

3.8 Balance Point of a Triangle

3.9 Additional CD Problems Using Basic Construction Steps

3.10 Group Problem: Inscribed Circles

3.11 Folding a Six-Pointed Star or a "Snowflake"

3.12 Problems Involving Paper Folding

3.13 How Do I Know if I Understand?


Chapter 4 - Explorations in Three-dimensional Geometry

4.0 Introduction

4.1 Polyhedra (Solids) from an Envelope

4.2 Roll-and-Fold Prism and Pyramid Activities

4.3 Net Project A: Prisms

4.4 Prisms

4.5 Makiing Sense of Volume: A Basic Relationship

4.6 Net Project B: Pyramids

4.7 Pyramids

4.8 Edges, Faces, and Vertices of Polyhedra

4.9 Special Kinds of Polyhedra

4.10 Riddles with Solids

4.11 Volumes Prisms, Pyramids, and Spheres

4.12 Volume of a Pyramid

4.13 What Does Volume Really Mean?

4.14 Volume of Solids: First Try

4.15a Solid-Geometry Problems, Version A

4.15b Solid-Geometry Problems, Version B

4.16 More Solid-Geometry Problems



Unit Origami: An Introduction

4.17 Instructions for the Basic Parallelogram Unit

4.18 Project for the Whole Class: Monster Stellated Icosahedron

4.19 Unit Origami Projects

4.20 Some Geometry of Unit Origami

4.21 Convex Deltahedra: How Many Are There?

4.22 Problems: Unit Origami

4.23 How Do I Know if I Understand?


Part2 GeoBoards and Dot Paper


Chapter 5 - Area

5.0 Introduction

5.1 How Much Space in a Triangle?

5.2 Areas on a Geoboard

5.3 Two Ways: Cut-up and Take-away

5.4 Areas: Parallelograms and Trapezoids

5.5 Area by Julie's Way

5.6 Which Ways Work for These Figures?

5.7 Areas: How Many Ways?

5.8 Area Problems: First Try

5.9 A Sampling of Area Problems

5.10 Making Sense of Common Units for Length and Area

5.11a Area Problems, Version A

5.11b Area Problems, Version B

5.12 More Area Problems

5.13 How Do I Know if I Understand?


Chapter 6 - Explorations with Geoboard Areas

6.0 Introduction

6.1 Areas of Skew Quadrilaterals

6.2 Solid Tile Shapes

6.3 Problems: Tile Shapes

6.4 Areas of Tile Shapes

6.5 Areas by Counting Pets

6.6 How Many Tile Shapes with Five Squares?

6.7 Counting Areas: Pick's Formula

6.8 Skew Figures

6.9 Discovering, Describing, and Using Relationships

6.10 Sean's Idea: Area = Inside Pegs

6.11a Problems: Geoboard Areas,  Version A

6.11b Problems: Geoboard Areas,  Version B

6.12 More Problems: Geoboard Areas

6.13 How Do I Know if I Understand?


Chapter 7 - Similarity and Slope

7.0 Introduction

7.1 Slope or Steepness

7.2 Slope: Parallel and Perpendicular

7.3 Slope Problems, Part 1

7.4 Slope Problems, Part 2

7.5 Linear Equations, Tables of Values, and Slopes

7.6 Similar Figures and Their Properties

7.7 Similar Figures and Proportionality

7.8 Measuring Proportionality

7.9 Reasoning withSimilar Triangles

7.10 Similarity and Scale Factors (Length Factors)

7.11 Scaling, Areas, and Area Factors

7.12 Scaling Problems, First Try

7.13 Scaling Problems

7.14 Scaling and Volume of Solids

7.15a Problems: Slope, Similarity, and Scaling, Version A

7.15b Problems: Slope, Similarity, and Scaling, Version B

7.16 More Problems onSlope, Similarity, and Scaling

7.17 How Do I Know if I Understand?


Chapter 8 - Pythagorean Theorem and Perimeter

8.0 Introduction

8.1 RightTriangles of Squares

8.2 Pythagorean Puzzles

8.3 Estimating Perimeters on a Geoboard

8.4 Slant Lengths on a Geoboard

8.5 Geoboard Perimeters

8.6 Three Special Triangles

8.7 Pythagorean Problems, First Try

8.8a Perimeter and Right-Triangle Problems, Version A

8.8b Perimeter and Right-Triangle Problems, Version B

8.9 More Perimeter and Right-Triangle Problems

8.10 How Do I Know if I Understand?


Chapter 9 - Geometry of Circles

9.0 Introduction

9.1 Perimeter (Circumference) of a Circle

9.2 Area of a Circle

9.3 Area and Perimeter of Circles and Sectors

9.4 Area Problems with Circles, First Try

9.5 Problems: Area and Perimeter of Circles

9.6 Inscribed Angles of Arcs of Circles

9.7 The Law of Thales

9.8 Circumscribed or Cyclic Polygons

9.9 Circumscribing Circle for a Cyclic Quadrilateral

9.10 Problems: Inscribed Angles and Circumscribed Polygons

9.11a Problems: Geometry of Circles Version A

9.11b Problems: Geometry of Circles, Version B

9.12 Revisiting Volumes: Cones and Cylinders

9.13 Surface Area of an Orange

9.14 More Problems: Geometry of Circles

9.15 How Do I Know if I Understand?


Part 3 - Straightedge and Compass


Chapter 10 - Straightedge and Compass Constructions

10.0 Introduction

10.1 Basic Straightedge and Compass Constructions

10.2 Straightedge and Compass: Construct a Parallel Line

10.3 Examples: Reasoning in Construction Problems

10.4 Reasoning in Construction Problems

10.5 Making Triangles, I:Side-Side-Side

10.6 Making Triangles, II: Side-Angle-Side

10.7 Making Triangles, III: Angle-Side-Angle

10.8 Making Triangles, IV: Side-Side-Angle (Ambiguous Case)

10.9 Congruence Conditions for Triangles

10.10 How Do I Know I Understand?


Chapter 11 - Congruence Conditions and Reasoning from Definitions to Properties

11.0 Introduction

11.1 Congruence Conditions for Triangles and CPCT

11.2 Problems:Congruence Conditions and CPCT

11.3 Justifications by Congruence Conditions

11.4a Problems: Congruence Conditions, Version A

11.4b Problems: Congruence Conditions, Version B

11.5 More Problems: Congruence Conditions

11.6 FromDefinitions to Properties: Five-Step Reasoning

11.7 Example: Five-Step Reasoning, Problem A

11.8 Five Step reasoning, First Try

11.9 More Problems Using Five-Step Reasoning

11.10 How Do I Know if I Understand?


Part 4 - Computer Constructions and Explorations


Chapter 12 - Computer Constructions

12.0 Introduction

12.1 Getting Started with Computer Construction Software

12.2 Constructing Objects: Midpoints

12.3 Constructing Objects: Bisectors

12.4 Constructing Objects: Altitudes and Medians

12.5 The Euler Line of a Triangle

12.6 The Nine-point Circle of a Triangle

12.7 The Medial Quadrilateral of Quadrilateral

12.8 Problems: Investigating Relationships by Using Geometric Properties

12.9 How Do I Know if I Understand?


Chapter 13 - Computer Explorations

13.0 Introduction

13.1 Triangle Inequalities

13.2 Angle Bisectors: Why the Incenter Works

13.3 Perpendicular Bisectors: Why the Circumcenter Works

13.4 Medians and the Centroid of a Triangle

13.5 Altitudes: The Orthic Triangle

13.6 Angle Bisectors, Medians, and Altitudes: Some Relationships

13.7 Revisiting the Medial Triangle: Perimeter and Area

13.8 Revisiting the Medial Quadrilateral: Area

13.9 Quadrilaterals and Circles

13.10 Circles: Central Angles and Inscribed Angles

13.11 Circles: More on Inscribed Angles and Arcs

13.12 Problems: Investigating Relationships by Using Number Ideas

13.13 How Do I Know if I Understand?


Part 5 - Mira (Reflecta) and Tracing Paper


Chapter 14 - Mira Contructions

14.0 Introduction

14.1 The Mira: What Does it Mean?

14.2 Reflection Lines and Point-Image Segments

14.3 Constructions with a Mira (CDs)

14.4 Altitudes of a Triangle

14.5 Altitudes, Orthocenters, and Trapezoids

14.6 Altitude Constructions with a Mira

14.7 Measuring a Triangle's Three Altitudes

14.8 Where is the Circumcenter?

14.9 How Do I Know if I Understand?


Chapter 15 - Symmetry

15.0 Introduction

15.1 Miniproject: Fold-andCut Paper Figures

15.2 Fold-and-Cut (Symmetric) Shapes

15.3 Orientation: One or Two Sides?

15.4a Problems: Symmetry, Version A

15.4b Problems: Symmetry, Version B

15.5 Fold and Cut: Three Symmetry Lines

15.6 Fold and Cut: Fivefold Symmetry

15.7 Problems: More on Symmetry

15.8 How Do I Know if I Understand?


Chapter 16 - The Four Symmetries

16.0 Introduction

16.1 Four Actions: Slide, Flip, Turn, and Glide-Flip

16.2 Four Symmetries

16.3 Translations and Coordinates

16.4 Problems: Four Actions or Symmetries

16.5 Combinatons of Reflections

16.6 Actions: Which of the Four Types?

16.7 Rotations and Glide-Reflections: Point-Image Segments

16.8 How Do You Get from One to the Other?

16.9 CD Problem: Find the Center of Rotation

16.10 CD Problem: Find the Glide-Reflection Line

16.11 An Experiment with the Four-Kinds Principle

16.12 Marking Symmetries on Wallpaper Designs

16.13a Problems: Four Types of Symmetry, Version A

16.13b Problems:Four Types of Symmetry, Version B

16.14 More Problems Involving the Four Types of Symmetry

16.15 How Do I Know if I Understand?


Prologue: Symmetries of Decorative Art

Prologue to Chaptes 17, 18, and 19


Chapter 17 - Symmetries of Mandalas

17.0 Introduction

17.1 Symmetries of Mandalas

17.2 Classifying Mandalas, First Try

17.3 Classifying Mandalas

17.4 Mandalas: One or Two Sides?

17.5 Template Design Mandalas

17.6 Template Design Problems

17.7 Express Yourself with a Mandala

17.8 The Symmetry Classification of Mandalas

17.9 Problems: Mandalas

17.10a Problems: Mandalas, Version A

17.10b Problems: Mandalas, Version B

17.11 How Do I Know if I Understand?


Chapter 18 - Symmetries of Borders

18.0 Introduction

18.1 Glide-Reflectional and Half-turn Symmetry

18.2 Classifying Borders, First Try

18.3 Borders: What Is Their Symmetry Type?

18.4 Generating Borders

18.5 Borders: Make Your Own Display

18.6 The Symmetry Classificaton of Borders

18.7 Problems Classifying Borders

18.8a Problems: Borders, Version A

18.8b Problems: Borders, Version B

18.9 How Do I Know if I Understand?


Chapter 19 - Escher-Style Tessellations

19.0 Introduction

19.1 Escher Tessellations, Type TTTT

19.2 How to Make a Type TTTT Tessellation

19.3 Cut and Tape: Make Your Own Tessellating Shape

19.4 Miniproject: Recognizability

19.5 Four Moves for Tessellating Squares

19.6 What Are the Possible Heesch Types?

19.7 What is the Heesch Type?

19.8 Project: Making Escher-Style Tessellations

19.9 Checking Understanding of Heesch Types

19.10 Marking Symmetries on Escher Tessellations

19.11 Do These Tessellations Work?

19.12 How Do I Know if I Understand?



A.1 A Guide for You, the Student: Making Sense of Geometry in an Inquiry-based Class

A.2 GeoSET Website: Internet Resources for Students

A.3 Construct/Describe Problems

A3.1 Hints for Doing CD Problems

A3.2 Shorthand Comments for CD Problems

A3.3 Catalogue of CD Problems

A.4 Dot Paper Template for Copying