Geometrie der Töne: Elemente der Mathematischen Musiktheorie by Guerino MazzolaGeometrie der Töne: Elemente der Mathematischen Musiktheorie by Guerino Mazzola

Geometrie der Töne: Elemente der Mathematischen Musiktheorie

byGuerino Mazzola

Paperback | April 8, 2012 | German

Pricing and Purchase Info

$90.95

Earn 455 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

Title:Geometrie der Töne: Elemente der Mathematischen MusiktheorieFormat:PaperbackPublished:April 8, 2012Publisher:Birkhäuser BaselLanguage:German

The following ISBNs are associated with this title:

ISBN - 10:3034874286

ISBN - 13:9783034874281

Look for similar items by category:

Reviews

Table of Contents

Erster Teil: Orientierung und Einleitung.- 1 Topographie der Musik.- 1.1 Einführung.- 1.2 Realitätsebenen.- 1.3 Musik als Kommunikation.- 1.4 Das musikalische Zeichensystem.- 1.5 Zusammenfassung und Überblick.- 2 Parameterräume für Klänge.- 2.1 Einführung.- 2.2 Physikalische Räume.- 2.3 Mathematische Räume.- 2.3.1 Einsatzzeit und Dauer.- 2.3.2 Amplitude.- 2.3.3 Frequenz.- 2.4 Interpretative Räume.- 2.4.1 Einsatzzeit und Dauer.- 2.4.2 Schalldruckpegel.- 2.4.3 Tonhöhe: Oktavidentifikation.- 2.5 Summen von Merkmalsräumen.- 3 Zur Physiologie und Psychologie des Musikhörens.- 3.1 Einführung.- 3.2 Physiologie: Von der Ohrmuschel zu den Heschlschen Querwindungen.- 3.3 Unterscheidungsvermögen von Tönen: Meyer-Epplers Valenztheorie.- 3.4 Symbolische, physiologische und psychologische Aspekte von Konsonanz und Dissonanz.- 3.4.1 Eulers Gradus-Funktion.- 3.4.2 Helmholtz' Schwebungsmodell.- 3.4.3 Psychometrische Untersuchungen von Plomp und Levelt.- 3.4.4 Kontrapunkt.- 3.4.5 Konsonanz-Dissonanz: Ein Begriffsfeld.- Zweiter Teil: Lokale Theorie.- 4 Lokale musikalische Strukturen.- 4.1 Die Objekte der lokalen Theorie.- 4.1.1 Moduln.- 4.1.2 Lokale Kompositionen.- 4.1.3 Lokale musikalische Materialkunde I Beispiele: Skalen, Akkorde, Rhythmen, Motive.- 4.2 Lokale Theorie der Symmetrien.- 4.2.1 Symmetrien in der Musik.- 4.2.2 Morphismen zwischen lokalen Kompositionen.- 4.2.3 Symmetriegruppen: Form und Inhalt.- 4.3 Klassifikation lokaler Kompositionen.- 4.3.1 Worum es geht.- 4.3.2 Methoden und Resultate.- 4.3.3 Lokale musikalische Materialkunde II Klassifikation: Skalen, Akkorde, Rhythmen, Motive.- 4.3.4 Anwendung: Das von Schubert vertonte Gedicht «Lied zu singen auf dem Wasser» von Stolberg.- Dritter Teil: Globale Theorie.- 5 Globale musikalische Strukturen.- 5.1 Die Theorie der globalen Kompositionen.- 5.1.1 Einführung.- 5.1.2 Ansätze.- 5.1.3 Globale Kompositionen.- 5.1.4 Symmetrien auf globalen Kompositionen.- 5.2 Interpretationen.- 5.2.1 Definition und Beispiele.- 5.2.2 Terzschichtungen.- 5.2.3 Interpretation und Instrumentierung.- 5.3 Elementare globale musikalische Materialkunde.- 5.3.1 Kirchentonarten.- 5.3.2 Dreiklangstufungen.- 5.3.3 Motivinterpretationen.- 5.4 Die Idee der Kadenz.- 5.4.1 BegrifFsbildung.- 5.4.2 Beispiele.- 5.5 Modulationsmodelle via «Wechselwirkungskräfte».- 5.5.1 Motivation, Heuristik und formale Präzisierung.- 5.5.2 Das Modulationstheorem für die wohltemperierte Simmung.- 5.5.3 Das Modulationstheorem für die reine Stimmung.- 5.6 Erste Beispiele zum Modulationstheorem.- 5.6.1 J.S. Bach: Choral aus dem «Himmelfahrtsoratorium».- 5.6.2 W.A. Mozart: «Zauberflöte», Chor der Priester.- 5.6.3 C. Debussy: «Préludes», Livre 1, No.4.- 5.7 Analyse der Modulationsstruktur in Beethovens «Hammerklavier»-Sonate op.106.- 5.7.1 Einführung.- 5.7.2 Die fundamentale These von Ratz.- 5.7.3 Die Modulationsstruktur im Überblick.- 6 Klassifikation globaler Kompositionen.- 6.1 Die Technik der Auflösung.- 6.1.1 Ein illustratives Beispiel.- 6.1.2 Die Auflösung einer Komposition.- 6.2 Klassifikation.- 6.2.1 Aesthetik der Klassifikation.- 6.2.2 Das Programm der Klassifikation.- Vierter Teil: Vertiefung.- 7 Der Kontrapunkt als melodische Variation des Gregorianischen Chorals.- 7.1 Pfeile: die Formalisierung des Variationsgedankens.- 7.1.1 Pfeile und Alterationen.- 7.1.2 Kontrapunktisches Intervalldenken.- 7.1.3 Der Intervallring.- 7.1.4 Die musikalische Bedeutung der Symmetrien des Intervallrings.- 7.2 Dichotomien als Ausdruck musikalischen Gegensatzdenkens.- 7.2.1 Dichotomien und formalisiertes Polaritätsdenken.- 7.2.2 Die Konsonanz-Dissonanz-Dichotomie auf dem Intervallring.- 7.3 Lokale Symmetrien als Modell kontrapunktischer Fortschreitung.- 7.3.1 Deformationen der K~/D~-Dichotomie im Intervallring durch kontrapunktische Symmetrien.- 7.3.2 Kontrapunktische Symmetrien sind lokale Symmetrien.- 7.3.3 Das Kontrapunkttheorem.- 7.3.4 Diskussion des Kontrapunkttheorems im Licht des reduzierten strengen Satzes.- 8 Die Theorie des Streichquartetts.- 8.1 Allgemeine und historische Vorbemerkungen.- 8.2 Die Theorie des Streichquartetts nach Finscher.- 8.2.1 Der vierstimmige Satz.- 8.2.2 Der Topos der Konversation von vier humanistisch gebildeten Personen.- 8.3 Die Violinfamilie.- 8.4 Abschätzung der Auflösungsparameter.- 8.4.1 Die Parameterräume der Geigenfamilie.- 8.4.2 Die Abschätzung.- 8.5 Die definierenden lokalen Strukturen von Kontrapunkt und Harmonielehre.- 8.5.1 Kontrapunkt.- 8.5.2 Harmonielehre.- 8.5.3 Die Wahl der Zahl.- 9 Mathematische Betrachtungen zur Historizität in der Musik.- 9.1 Das paradigmatische Thema.- 9.2 Gruppen als Parameter der Historizität.- 10 Der MD-Z71-Musikcomputer: Soft- und Hardware zur Mathematischen Musiktheorie.- 10.1 Die Notwendigkeit computergraphischer Operationalisierung.- 10.2 Entwicklungsziele des MD-Z71.- 10.3 Yoneda-Philosophie als Gestaltungsprinzip.- A0 Mengen, Relationen und Gruppen.- Al Koeffizientenbereiche für Töne.- A2 Moduln, lineare und affine Abbildungen.- A3 Musikalische Symmetrien und ihre Gruppen.- A4 Ergänzungen zum Fourier-Theorem und zur FM-Synthese.- A5 Das Yoneda-Lemma als methodologische Grundlage für die Theorie globaler Kompositionen.- A6 Der Nerv einer globalen Komposition.- Tabellen.- TA1 Eulers Gradus-Funktion.- TA2 Reingestimmte Chromatik und deren Abweichung von der 12-temperierten Chromatik.- TA5 Modulationsschritte in (a) 12-temperierten und (b) reinstimmigen Dur-Skalen.- TA6 Erlaubte Schritte im zweistimmigen Kontrapunkt Note gegen Note.- Bibliographie.- MaMuTh-Lexikon.