High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine

Hardcover | June 29, 2009

EditorGraeme Hanson, Lawrence Berliner

not yet rated|write a review
Metalloproteins comprise approximately 30% of all known proteins, and are involved in a variety of biologically important processes, including oxygen transport, biosynthesis, electron transfer, biodegradation, drug metabolism, proteolysis, and hydrolysis of amides and esters, environmental sulfur and nitrogen cycles, and disease mechanisms. EPR spectroscopy has an important role in not only the geometric structural characterization of the redox cofactors in metalloproteins but also their electronic structure, as this is crucial for their reactivity. The advent of x-ray crystallographic snapshots of the active site redox cofatcors in metalloenzymes in conjunction with high-resolution EPR spectroscopy has provided detailed structural insights into their catalytic mechanisms.This volume was conceived in 2005 at the Rocky Mountain Conference on Analytical Chemistry (EPR Symposium) to highlight the importance of highresolution EPR spectroscopy to the structural (geometric and electronic) characterization of redox active cofactors in metalloproteins. We have been fortunate to have enlisted internationally recognized experts in this joint venture to provide the scientific community with an overview of high-resolution EPR and its application to metals in biology. This volume, High-Resolution EPR: Applications to Metalloenzymes and Metals in Medicine, covers high-resolution EPR methods, iron proteins, nickel and copper enzymes, and metals in medicine. An eloquent synopsis of each chapter is provided by John Pilbrow in the Introduction which follows. A second volume, Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes, will appear later this year covering the complement of other metalloproteins.One of the pioneers in the development of pulsed EPR and its application to metalloproteins was Arthur Schweiger, whose contribution we include in this volume. Unfortunately, he passed away suddenly during the preparation of this volume. The editors and coauthors are extremely honored to dedicate this volume to the memory of Arthur Schweiger in recognition of his technical advances and insights into pulsed EPR and its application to metalloproteins. Arthur was extremely humble and treated everyone with equal respect. He was a gifted educator with an ability to explain complex phenomena in terms of simple intuitive pictures, had a delightful personality, and continues to be sadly missed by the community.It is an honor for the editors to facilitate the dissemination of these excellent contributions to the scientific community. Suggestions for future volumes are always appreciated.

Pricing and Purchase Info

$460.44 online
$466.95 list price
In stock online
Ships free on orders over $25

From the Publisher

Metalloproteins comprise approximately 30% of all known proteins, and are involved in a variety of biologically important processes, including oxygen transport, biosynthesis, electron transfer, biodegradation, drug metabolism, proteolysis, and hydrolysis of amides and esters, environmental sulfur and nitrogen cycles, and disease mechan...

From the Jacket

High Resolution EPR: Applications to Metalloenzymes and Metals in MedicineProf. Graeme Hanson, University of Queensland and Prof. Lawrence Berliner, University of DenverMetalloproteins are involved in a variety of biologically important processes, including metal ion and oxygen transport, biosynthesis, electron transfer, biodegradation...

Prof. Graeme Hanson, located in the Centre for Magnetic Resonance at the University of Queensland, has applied a unique synergistic approach involving both theoretical and experimental aspects of multifrequency continuous wave and pulsed EPR spectroscopy to structurally (geometric and electronic) characterise the metal binding sites in...

other books by Graeme Hanson

Electron Spin Resonance (ESR) Based Quantum Computing
Electron Spin Resonance (ESR) Based Quantum Computing

Kobo ebook|Oct 12 2016

$86.79 online$112.62list price(save 22%)
Format:HardcoverDimensions:692 pages, 9.25 × 6.1 × 0.03 inPublished:June 29, 2009Publisher:Springer New YorkLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:038784855X

ISBN - 13:9780387848556

Look for similar items by category:

Customer Reviews of High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine

Reviews

Extra Content

Table of Contents

Chapter 1Introduction....................................................................................................... 1John R. PilbrowHIGH-RESOLUTION EPR METHODSChapter 2Advanced Pulse EPR Methods for the Characterization of MetalloproteinsJeffrey Harmer, George Mitrikas, and Arthur Schweiger1. Introduction................................................................................................. 132. Spin Hamiltonian ........................................................................................ 153. ESEEM Basics ............................................................................................ 204. Electron Nuclear Double Resonance (ENDOR).......................................... 405. Field-Swept EPR Experiments .................................................................... 526. Strategies and Outlook ................................................................................ 54Chapter 3Probing Structural and Electronic Parameters in Randomly Oriented Metalloproteins by Orientation-Selective ENDOR SpectroscopyReinhard Kappl, Gerhard Bracic, and Jürgen Hüttermann1. Introduction................................................................................................. 642. Theory ......................................................................................................... 653. Orientation Selection in EPR and ENDOR................................................. 744. Examples of Applications: Iron-Sulfur Proteins......................................... 825. Summary ..................................................................................................... 100Chapter 4Molecular Sophe: An Integrated Approach to the Structural Characterization of Metalloproteins: The Next Generation of Computer Simulation SoftwareGraeme R. Hanson, Christopher J. Noble, and Simon Benson1. Introduction................................................................................................. 1052. Molecular Sophe Computational Software Suite ........................................ 1143. Sophe: Computational Code........................................................................ 1504. Molecular Sophe - Examples.................................................................... 1595. Advances in Spectral Optimization ............................................................. 1676. Conclusions................................................................................................. 171Chapter 5Spin-Hamiltonian Parameters from First Principle Calculations: Theory and ApplicationFrank Neese1. Introduction................................................................................................. 1752. Electronic Structure Theory of Spin-Hamiltonian Parameters .................... 1773. Case Studies ................................................................................................ 2014. Concluding Remarks ................................................................................... 222IRON PROTEINSChapter 6EPR of Mononuclear Non-Heme Iron ProteinsBetty J. Gaffney1. EPR of Mononuclear, High-Spin Ferric Non-Heme Proteins ...................... 2332. EPR of Mononuclear, Low-Spin Ferric Non-Heme Proteins ....................... 2513. Radical (S = 1/2) Probes of Ferrous (S = 2) Iron ........................................ 251Chapter 7Binuclear Non-Heme Iron EnzymesNatasa Mitic, Gerhard Schenk, and Graeme R. Hanson1. Introduction.................................................................................................. 2692. Bacterial Multicomponent Monooxygenases ............................................... 2743. Ribonucleotide Reductase ........................................................................... 3034. Stearoyl-Acyl Carrier Protein delta 9 Desaturase........................................ 3145. Myo-Inositol Oxygenase .............................................................................. 3206. Rubrerythrin, Nigerythrin, and Sulerythrin ................................................... 3267. Ferritins and Bacterioferritins ..................................................................... 3328. Hemerythrin ................................................................................................. 3379. Hydrolytic Enzymes...................................................................................... 34110. Rubredoxin-Oxygen Oxidoreductase and Nitric Oxide Reductases............ 35011. Membrane-Bound Diiron Proteins: Alternative Oxidase............................ 35312. Conclusions................................................................................................. 355Chapter 8Probing the Structure-Function Relationship of Heme Proteins Using Multifrequency Pulse EPR TechniquesSabine Van Doorslaer1. Introduction.................................................................................................... 3972. Ferric Forms of Heme Proteins ..................................................................... 3983. NO-Ligated Heme Proteins ........................................................................... 4084. Distance Measurements in Heme Proteins .................................................... 4105. Conclusions and Outlook .............................................................................. 411Chapter 9EPR Studies of the Chemical Dynamics of NO and Hemoglobin InteractionsBenjamin P. Luchsinger, Eric D. Walter, Lisa J. Lee, Jonathan S. Stamler, and David J. Singel1. Introduction................................................................................................... 4192. EPR Spectroscopy of NO Hb Interactions .................................................... 4243. Evolution of NO Hb Interactions .................................................................. 431NICKEL AND COPPER ENZYMESChapter 10EPR Investigation of [NiFe] Hydrogenases Maurice van Gastel and Wolfgang Lubitz1. Classification, Composition and Structure of Hydrogenases......................... 4422. Basic Description of the Electronic Structure ............................................... 4453. EPR Characterization of [NiFe] Hydrogenases: the g Tensors ..................... 4484. ENDOR and ESEEM Studies of [NiFe] Hydrogenase: Hyperfine Structure ......... 4565. Distance Studies of [NiFe] Hydrogenases..................................................... 4626. EPR-Silent States .......................................................................................... 4627. Conclusions and Outlook .............................................................................. 462Chapter 11Unique Spectroscopic Features and Electronic Structures of Copper Proteins: Relation to ReactivityJungjoo Yoon and Edward I. Solomon1. Introduction................................................................................................... 4712. Mononuclear Blue "Type 1" Cu Sites ........................................................... 4753. Binuclear CuA Sites ..................................................................................... 4784. Coupled Binuclear "Type 3" Cu Sites........................................................... 4815. Non-Coupled Binuclear Cu Sites ................................................................. 4836. Trinuclear Cu(II) Cluster Sites ..................................................................... 4867. Tetranuclear CuZ Sites.................................................................................. 4938. Concluding Comments................................................................................... 496METALS IN MEDICINEChapter 12Insulin-Enhancing Vanadium Pharmaceuticals: The Role of Electron Paramagnetic Resonance Methods in the Evaluation of Antidiabetic PotentialBarry D. Liboiron1. Introduction................................................................................................... 5072. In Vitro Studies of Vanadium Speciation and Redox Chemistry................... 5123. Use of EPR for In Vivo Studies of Vanadium Metabolism and Coordination Structure........................................................................................................... 5254. Summary ..................................................................................................... 540Chapter 13Chromium in Cancer and Dietary SupplementsAviva Levina, Rachel Codd, and Peter A. Lay1. Roles of Reactive Intermediates in Chromium(VI)- Induced Toxicity and in Anti-Diabetic Effects of Chromiu (III) ................................................................... 5522. Chromium(V) Intermediates ....................................................................... 5543. Chromium(III) and Chromium(IV) Species ................................................ 5654. Free Radicals as Intermediates in Chromium Biochemistry ....................... 5685. Living Cell and Animal Studies .................................................................. 569Chapter 14High-Frequency EPR and ENDOR Characterization of MRI Contrast AgentsArnold M. Raitsimring, Andrei V. Astashkin, and Peter Caravan1. Introduction................................................................................................. 5812. Frequency Dependence of Gd(III) Electronic Relaxation in Aqueous Solution.......................................................................................................... 5863. Crystal Field Interaction (CFI) Parameters for Gd(III) Complexes in Glassy Solutions from High-Field EPR Experiments................................................................. 5904. High-Field Pulsed ENDOR of Water Ligands in MRI Agents and the Geometry of Water Coordination........................................................................................ 5975. Conclusions................................................................................................ 616