How To Solve It: Modern Heuristics by Zbigniew MichalewiczHow To Solve It: Modern Heuristics by Zbigniew Michalewicz

How To Solve It: Modern Heuristics

byZbigniew Michalewicz, David B. Fogel

Paperback | December 6, 2010

Pricing and Purchase Info

$73.07 online 
$82.95 list price save 11%
Earn 365 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

No pleasure lasts long unless there is variety in it. Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.
Title:How To Solve It: Modern HeuristicsFormat:PaperbackDimensions:554 pagesPublished:December 6, 2010Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3642061346

ISBN - 13:9783642061349

Look for similar items by category:

Reviews

Table of Contents

I What Are the Ages of My Three Sons?.- 1 Why Are Some Problems Difficult to Solve?.- II How Important Is a Model?.- 2 Basic Concepts.- III What Are the Prices in 7-11?.- 3 Traditional Methods - Part 1.- IV What Are the Numbers?.- 4 Traditional Methods - Part 2.- V What's the Color of the Bear?.- 5 Escaping Local Optima.- VI How Good Is Your Intuition?.- 6 An Evolutionary Approach.- VII One of These Things Is Not Like the Others.- 7 Designing Evolutionary Algorithms.- VIII What Is the Shortest Way?.- 8 The Traveling Salesman Problem.- IX Who Owns the Zebra?.- 9 Constraint-Handling Techniques.- X Can You Tune to the Problem?.- 10 Tuning the Algorithm to the Problem.- XI Can You Mate in Two Moves?.- 11 Time-Varying Environments and Noise.- XII Day of the Week of January 1st.- 12 Neural Networks.- XIII What Was the Length of the Rope?.- 13 Fuzzy Systems.- XIV Everything Depends on Something Else.- 14 Coevolutionary Systems.- XV Who's Taller?.- 15 Multicriteria Decision-Making.- XVI Do You Like Simple Solutions?.- 16 Hybrid Systems.- 17 Summary.- Appendix A: Probability and Statistics.- A.1 Basic concepts of probability.- A.2 Random variables.- A.2.1 Discrete random variables.- A.2.2 Continuous random variables.- A.3 Descriptive statistics of random variables.- A.4 Limit theorems and inequalities.- A.5 Adding random variables.- A.6 Generating random numbers on a computer.- A.7 Estimation.- A.8 Statistical hypothesis testing.- A.9 Linear regression.- A.10 Summary.- Appendix B: Problems and Projects.- B.1 Trying some practical problems.- B.2 Reporting computational experiments with heuristic methods.- References.