Instrumental Methods of Analysis by B. SivasankarInstrumental Methods of Analysis by B. Sivasankar

Instrumental Methods of Analysis

byB. Sivasankar

Paperback | May 16, 2012

Pricing and Purchase Info


Earn 175 plum® points

Prices and offers may vary in store


Ships within 1-3 weeks

Ships free on orders over $25

Not available in stores


Instrumental Methods of Analysis is a textbook designed to introduce various analytical and chemical methods, their underlying principles and applications to the undergraduate engineering students of biotechnology and chemical engineering. This book would also be of interest to students whopursue their B. Sc / M. Sc degree programs in biotechnology and chemistry.The book starts with a discussion on fundamentals of analytical chemistry, followed by data handling and statistical analysis. Wet chemical methods form the third chapter, where all the conventional titrimetric and gravimetric analysis is dealt with. It then moves onto discuss topics such as themicroscopy, optical methods, various spectroscopic methods, X-ray methods, chromatographic methods, electrophoresis, and bulk separation methods. The last few chapters discuss electroanalytical methods, thermal, radioanalytical and finally the surface analytical methods. Illustrated with block diagrams throughout the text, the book provides review questions, and numerical examples in all relevant chapters.
Dr B Sivasankar is a Visiting Professor, Department of Chemistry, College of Engineering Guindy, Anna University, Chennai. He has more than 35 years of active teaching and research experience. He specializes in Analytical and Inorganic Chemistry and has published numerous articles in national and international journals of repute. A Ph...
Title:Instrumental Methods of AnalysisFormat:PaperbackDimensions:600 pagesPublished:May 16, 2012Publisher:Oxford University PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0198073917

ISBN - 13:9780198073918


Table of Contents

1. Introduction to Analytical Chemistry1.1 Scope and Applications of Analytical Chemistry1.2 Analytical Process1.3 Selection of Chemical Reactions for Analysis1.4 Equilibrium Methods1.5 Concepts of Chemical Equilibrium1.6 Types of Equilibria in Aqueous Media1.6.1 Self-dissociation of Water1.6.2 Acid-base Equilibria1.6.3 The pH Scale1.6.4 Hydrolysis of Salts and the pH of Salt Solutions1.6.5 Buffer Solutions1.6.6 Complexation Equilibria1.6.7 Solubility Equilibria1.6.8 Redox Equilibria1.7 Kinetic Methods of Analysis1.7.1 Experimental Methods for the Determination of Rate of Reaction1.7.2 Analytical Applications of Kinetic Methods1.8 Enzyme Catalysed Reactions1.8.1 Mechanistic and Kinetic Aspects of Enzyme Catalysed Reactions1.8.2 Applications of Enzymatic Analysis1.8.3 Substrates as Analytes1.8.4 Enzymes as Analytes1.9 Stoichiometric Calculations1.10 Expression of Concentrations of Solutions1.11 Reporting of Results2. Assessment of Analytical Data2.1 Introduction2.2 Definitions of Terms2.2.1 True Value2.2.2 Precision2.2.3 Accuracy2.2.4 Error2.2.5 Mean and Median2.2.6 Spread2.2.7 Deviation2.2.8 Population Standard Deviation2.2.9 Relative Standard Deviation and Coefficient of Variation2.2.10 Variance2.2.11 Significant Figures2.3 Types of Errors2.3.1 Gross Errors2.3.2 Systematic Errors or Determinate Errors2.3.3 Minimizing Systematic Errors2.3.4 Random Errors or Indeterminate Errors2.4 Statistical Treatment of Random Errors2.4.1 Distribution of Random Errors2.5 Evaluation of Experimental Results2.5.1 Reliability of Measurements2.5.2 Analysis of Data2.6 Comparison of Results2.6.1 F-test2.6.2 Student's t-test2.6.3 Paired t-test2.7 Standardization of Instrumental Methods of Analysis2.7.1 Limit of Detection and Limit of Quantitation2.7.2 Calibration Chart or Curve2.7.3 Method of Standard Addition2.7.4 Method of Least Squares3. Wet Chemical Methods of Analysis3.1 Introduction3.2 Volumetry3.3 Classification of Volumetric Methods3.4 Standard Solutions and Standard Substances3.5 Neutralization Titrations3.5.1 Theory of Acid-base Indicators3.5.2 Titration Curves3.5.3 Titration of a Strong Acid with a Strong Base3.5.3 Titration of a Strong Acid with a Strong Base3.5.5 Titration of a Weak Base with a Strong Acid3.5.6 Titration of a Weak Acid with a Weak Base3.5.7 Neutralization of Mixtures of Strong and Weak Acids or Strong and Weak Bases3.5.8 Titration of Polybasic Acids with a Strong Base3.5.9 Titrations in Non-aqueous Media3.5.10 Applications of Acid-base Titrations3.5.10 Applications of Acid-base Titrations3.6.1 Argentometry3.6.2 Detection of End Points3.7 Complexation Titrations3.7.1 Metal-EDTA Equilibrium3.7.2 Titration Curves3.7.3 Metal Ion Indicators3.7.4 Theory of Metal Ions Indicators3.7.5 Types of EDTA Titrations3.7.6 Applications of EDTA Titrations3.8 Redox Titrations3.8.1 Redox Indicators3.8.2 Permanganometry3.8.3 Dichrometry3.8.4 Iodometry3.8.5 Applications of Redox Titrations3.9 Gravimetry3.10 Volatilization Methods3.11 Precipitation Methods3.11.1 Theoretical Principles of Precipitation Methods3.11.2 Criteria for an Ideal Gravimetric Estimation3.11.3 Precipitating Agents3.11.4 Factors Affecting Solubility of Precipitates3.11.5 Mechanism of Formation of Precipitates3.11.6 Colloidal Precipitates3.11.7 Contamination of Precipitates3.11.8 Practical Aspects3.11.9 Homogeneous Precipitation3.11.10 A Few Examples of Gravimetric Estimations3.12 A Few Examples of Analysis of Alloys, ORES and Complex Materials by WetChemical Methods3.12.1 Analysis of an Iron Ore3.12.2 Analysis of Brass3.12.3 Analysis of Solder3.12.4 Analysis of Cement4. Optical Methods4.1 Introduction4.2 Refraction4.3 Refractive Index4.3.1 Measurement of Refractive Index4.3.2 Abbe Refractometer4.3.3 Immersion Refractometer4.3.4 Applications of Refractometry4.4 Polarimetry4.4.1 Polarization of Light4.4.2 Polarizers4.4.3 Polarimetry Theory4.4.4 Polarimeter4.4.5 Applications of Polarimetry4.5 Optical Rotatory Dispersion and Circular Dichroism Spectra5. Microscopy5.1 Introduction5.2 Optical Microscope5.2.1 Compound Light Microscope5.3 Imaging Techniques5.3.1 Bright-field Microscopy5.3.2 Dark-field Microscopy5.3.3 Phase Contrast Microscopy5.3.4 Fluorescence Microscope5.3.5 Confocal Microscopy5.3.6 Polarizing Microscope5.3.7 Flow Cytometry5.4 Electron Microscope5.4.1 Transmission Electron Microscope5.4.2 Scanning Electron Microscope5.4.3 Scanning Transmission Electron Microscope (Stem)5.5 Scanning Probe Microscopy5.5.1 Scanning Tunnelling Microscope5.5.2 Atomic Force Microscope6. Spectroscopic Methods of Analysis6.1 Introduction6.2 Electromagnetic Radiation6.2.1 Electromagnetic Spectrum6.3 Energy Levels in Atoms6.3.1 Interaction of Electromagnetic Radiation with Atoms6.4 Energy Levels in Molecules6.4.1 Interaction of Electromagnetic Radiation with Molecules6.5 Classification of Spectroscopic Techniques6.6 Absorption and Emission Spectra6.6.1 Width of Spectral Lines6.6.2 Intensity of Spectral Lines6.7 Analytical Applications of Spectroscopy6.7.1 Beer-Lambert Law6.7.2 Applications of Beer-Lambert Law6.7.2 Limitations to Beer-Lambert's Law6.8 Visual Colorimetry6.8.1 Quantitative Analysis6.8.2 Instruments for Optical Spectrometry and Measurement of Absorbance6.9 Spectrometers and their Components6.9.1 Radiation Sources6.9.2 Dispersing Devices6.9.3 Sample Holders6.9.4 Radiation Detectors6.9.5 Signal Processors and Display Units6.10 Configurations of Spectrometers6.11 Fourier Transform Spectrometers7. Atomic Spectroscopy7.1 Introduction7.2 Classification of Atomic Spectrometric Methods7.3 Atomization7.4 Atomization Methods7.4.1 Flame Atomization7.4.2 Electrothermal Atomization7.4.3 Glow Discharge Atomization7.4.4 Cold-vapour Atomization7.4.5 Hydride Atomization7.5 Atomic Absorption Spectrometry7.5.1 Principle7.5.2 Atomic Absorption Spectrometer7.5.3 Working of AAS7.5.4 Interferences in Atomic Absorption Measurements7.6 Atomic Emission Spectroscopy7.6.1 Excitation Methods7.7 Flame Emission Spectrometry7.8 Plasma Emission Spectrometry7.8.1 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)7.8.2 Inductive Coupled Plasma-mass Spectrometry7.8.3 Direct Current Plasma Atomic Emission Spectroscopy (DCP-AES)7.8.4 General Features of Plasma Source Spectrometers7.9 Atomic Fluorescence Spectroscopy8. Molecular Spectroscopy8.1 Introduction8.2 UV-Visible Spectroscopy8.2.1 Electronic Spectra of Molecules8.2.2 Franck-Condon Principle8.2.3 Electronic Transitions in Organic Molecules8.2.4 Factors Affecting Absorption Bands8.2.5 Electronic Transitions in Inorganic Species8.2.6 UV-visible Spectrophotometer8.2.7 Analytical Applications of UV-visible Spectroscopy8.2.8 Simultaneous Determinations8.2.9 Photometric Titrations8.2.10 Examples of Spectrophotometric Determinations8.3 Infrared Spectrophotometry8.3.1 Infrared Region8.3.2 Molecular Vibrations8.3.4 Vibrational Frequencies and IR Absorption Bands8.3.5 Infrared Spectrum8.3.6 IR Spectrophotometer8.3.7 Sample Preparation8.3.8 Applications8.3.9 Diffuse Reflectance Infrared Fourier Transform Spectrometry8.3.10 Attenuated Total Reflectance Spectroscopy8.3.11 Near Infrared Spectroscopy8.3.12 Far Infrared Spectroscopy8.4 Raman Spectroscopy8.4.1 Comparison of Raman and Infrared Spectra8.4.2 Raman Spectrometer8.4.3 Applications of Raman Spectroscopy8.4.4 Resonance Raman Spectroscopy8.5 Microwave Spectrometry8.5.1 Microwave Spectrometer8.6 Molecular Fluorescence and Phosphorescence8.6.1 Molecular Fluorescence Spectroscopy8.6.2 Fluorescent Molecules8.6.3 Fluorescence and Molecular Structure8.6.4 Factors Affecting Fluorescence Emission8.6.5 Analytical Aspects of Fluorescence Emission8.6.6 Fluorometers8.6.7 Applications of Fluorescence Measurements8.6.8 Molecular Phosphorescence Spectroscopy8.7 Chemiluminescence8.8 Turbidimetry and Nephelometry9. Magnetic Resonance Spectroscopy9.1 Introduction9.2 Nuclear Magnetic Resonance Spectroscopy9.2.1 Theory of Nuclear Magnetic Resonance9.2.2 Nuclear Energy Levels in an External Magnetic Field9.2.3 Magnetic Resonance9.2.4 Classical Model NMR Absorption9.2.5 Relaxation Processes9.3 NMR Spectrometers9.3.1 NMR Spectrum9.4 Environmental Effects9.4.1 Chemical Shift9.4.2 Diamagnetic Anisotropy and Chemical Shift9.4.3 Spin-spin Coupling9.4.4 Interpretation of First Order Spectra9.4.5 Simplification of Complex Spectra9.5 Nuclear Magnetic Resonance Spectroscopy of Nuclei other than Hydrogen9.6 Carbon-13 NMR Spectroscopy9.7 Applications of NMR Spectroscopy9.8 Fourier Transform NMR Spectroscopy9.9 Magic Angle Spinning NMR Spectroscopy9.10 Electron Spin Resonance Spectroscopy9.10.1 ESR Spectrometer9.10.2 ESR Spectrum9.10.3 Hyperfine and Fine Structures in ESR Spectra9.10.4 Double Resonance9.10.5 Applications of ESR Spectroscopy10. Mass Spectrometry10.1 Introduction10.2 Principle10.3 Mass Spectrometer10.3.1 Sample Inlet10.3.2 Ionization Source and Acceleration Chamber10.3.3 Mass Analyser10.3.4 Detector10.3.5 Recording System10.4 Ionization Methods10.4.1 Electron Impact Ionization (EI)10.4.2 Spark Ionization10.4.3 Chemical Ionization (CI)10.4.4 Field Ionization (FI)10.4.5 Field Desorption10.4.6 Fast Atom/Ion Bombardment (FAB)10.4.7 Electrospray Ionization (ESI)10.4.8 Matrix-assisted Laser Desorption/Ionization (MALDI)10.5 Other types of Mass Spectrometers10.5.1 Quadrupole Mass Analyser or Spectrometer10.5.2 Time of Flight Mass Spectrometer10.5.3 Ion Trap Analyser (Spectrometer)10.5.4 Fourier Transform Mass Spectrometer10.6 Tandem Mass Spectrometry10.7 Interpretation of Mass Spectrum10.8 Applications10.8.1 Molecular Weight Determination10.8.2 Determination of Molecular Formula10.8.3 Structural Information10.8.4 Identification of the Sample Compound10.8.5 Applications in the Study of Proteins and Nucleic Acids11. X-ray Methods11.1 Introduction11.2 X-ray Spectroscopic Instruments11.2.1 Production of X-rays by Electron Bombardment11.2.2 X-rays from Radioactive Sources11.2.3 Filters11.2.4 Monochromator, Collimator and Goniometer Assembly11.2.5 Detectors11.3 Classification of X-ray Methods11.4 X-ray Absorption Spectroscopy11.4.1 Absorption of X-rays11.4.2 X-ray Absorption Spectrometer11.4.3 Applications of X-ray Absorption Spectrometry11.5 X-ray Fluorescence Spectroscopy11.5.1 Fluorescence Emission of X-rays11.5.2 X-ray Fluorescence Spectrometer11.5.3 Applications of X-ray Fluorescence Spectroscopy11.6 X-ray Emission and Electron Probe Microanalysis11.7 X-ray Diffraction Methods12. Separation Methods12.1 An Overview of Separation Methods12.2 Solvent Extraction12.2.1 Principles of Liquid-liquid Extraction12.2.2 Selectivity of Extraction12.2.3 Parameters Affecting the Extraction Process12.2.4 Extraction Methods12.2.5 Modes of Extraction12.3 Aqueous Two-phase Extraction12.3.1 Aqueous Two-phase Systems12.3.2 Theoretical Principles of Aqueous Two-phase Extractions12.3.3 Aqueous Two-phase Extraction Process12.4 Reversed Micellar Extraction12.5 Supercritical Fluid Extraction12.6 Solid Phase Extraction12.6.1 Solid Phase Micro Extraction12.7 Ion Exchange Separation12.7.1 Ion Exchangers12.7.2 Ion Exchange Equilibrium12.7.3 Capacity of Ion Exchangers12.7.4 Regeneration of Ion Exchangers12.8 Filtration12.9 Membrane Separation Techniques12.9.1 Theory of Membrane Separation12.9.2 Retention Coefficient12.9.3 Factors Affecting Membrane Separation12.9.4 Membranes and their Characteristics12.9.5 Equipment for Membrane Separation12.9.6 Membrane Separation Methods12.10 Crystallization12.11 Precipitation12.12 Lyophilization13. Chromatographic Separations13.1 Introduction13.2 Classification of Chromatographic Methods13.3 Column Chromatography13.3.1 Principle of Separation in Column Chromatography13.4 Chromatographic Parameters13.4.1 Retention Time13.4.2 Retention Volume13.4.3 Relative Retention13.4.4 Column Efficiency13.4.5 Resolution13.4.6 Peak Asymmetry13.4.7 Broadening of Chromatographic Peaks13.4.8 Optimization of Column Performance13.4.9 Applications of Chromatography13.5 Liquid Chromatography13.5.1 Practice of Liquid Chromatography13.6 Absorption Chromatography13.7 Partition Chromatography13.7.1 Normal Phase Chromatography13.7.2 Reversed Phase Chromatography13.7.3 Hydrophobic Interaction Chromatography13.8 Ion Exchange Chromatography13.8.1 Ion Chromatography (IC)13.9 Size Exclusion Chromatography (SEC)13.10 Affinity Chromatography13.11 High Performance Liquid Chromatography13.11.1 Principle13.11.2 HPLC Instrument13.11.3 Practice of HPLC13.11.4 Applications of HPLC13.11.5 HPLC-Mass Spectrometry (HPLC-MS)13.12 Supercritical Fluid Chromatography (SCFC)13.12.1 Supercritical Fluid Solvents and Their Properties13.12.2 SCFC Instrument13.13 Gas Chromatography 37113.13.1 Principle13.13.2 GC Instrument13.13.3 Hyphenated or Coupled Chromatographic Techniques13.13.4 Practice of GC13.13.5 Qualitative Analysis by Gas Chromatography13.13.6 Quantitative Analysis by Gas Chromatography13.14 Planar Chromatographic Techniques13.14.1 Paper Chromatography (PC)13.14.2 Thin Layer Chromatography (TLC)13.14.3 Two-dimensional Planar Chromatography13.14.4 High Performance Thin Layer Chromatography (HPTLC)13.14.5 Applications of Planar Chromatographic Techniques13.14.6 Developments in Planar Chromatographic Techniques14. Electrophoresis and Related Techniques of Separation14.1 Introduction14.2 Electrophoresis14.2.1 Free Solution Electrophoresis 39214.2.2 Zone Electrophoresis14.2.3 Polyacrylamide Gel Electrophoresis (PAGE)14.2.4 Native Gel Electrophoresis14.2.5 Disc Gel Electrophoresis14.2.6 Sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis (SDS-PAGE)14.2.7 Agarose Gel Electrophoresis14.2.8 Parameters Affecting Gel Electrophoretic Separations14.2.9 Detection of Proteins and Nucleic Acids in Electrophoresis Gels14.2.10 Pulsed Field Gel Electrophoresis (PFGE)14.2.11 Applications of Electrophoresis Techniques14.3 Immunoelectrophoresis14.4 Capillary Electrophoresis14.4.1 Micellar Electrokinetic Capillary Chromatography14.4.2 Capillary Gel Electrophoresis14.4.3 Capillary Electrochromatography14.5 Isoelectric Focusing14.6 Two-dimensional Electrophoresis14.7 Isotachophoresis15. Centrifugation15.1 Introduction15.2 Centrifugal Force15.3 Principles of Centrifugal Sedimentation15.4 Centrifuges15.4.1 Rotors15.5 Centrifugation Techniques15.6 Differential Centrifugation15.7 Density Gradient Centrifugation15.7.1 Sample Application and Harvesting Samples from Gradients15.7.2 Density Gradient Centrifugation Techniques15.8 Centrifugal Elutriation15.9 Ultracentrifuge15.9.1 Analytical Ultracentrifuge15.9.2 Applications of Analytical Ultracentrifuge15.9.3 Determination of Molecular Weight of Macromolecules15.9.3 Determination of Purity of Macromolecules15.9.4 Study of Conformation Changes in Macromolecules15.10 Preparative Ultracentrifuge16. Electroanalytical Methods16.1 Introduction16.2 Classification of Electroanalytical Techniques16.3 Conductometry16.3.1 Measurement of Conductance16.3.2 Applications of Conductance Measurements16.4 Conductance Titrations16.4.1 Acid-base Reactions16.4.2 Displacement Titrations16.4.3 Precipitation Titrations16.4.4 Complex-formation Reactions16.4.5 Titrations in Non-aqueous Media16.5 Oscillometric or High-frequency Titrations16.6 Principles of Electrogravimetry and Coulometry16.7 Electrogravimetry16.8 Coulometry16.8.1 Constant Potential Coulometry16.8.2 Constant Current Coulometry16.9 Potentiometry16.9.1 Thermodynamic Significance of Electrode Potentials16.9.2 Indicator Electrodes16.9.3 Reference Electrodes16.9.4 EMF Measurement16.9.5 Standard Weston Cadmium Cell16.10 Applications of EMF Measurements16.10.1 Determination of pH by Glass Electrode16.10.2 pH Titrations16.10.3 Potentiometric Titrations16.11 Ion Selective Electrodes16.11.1 Different Types of Ion Selective Electrodes16.12 Polarography16.12.1 Quantitative Analysis by Polarography16.12.3 Modern Polarographic Techniques16.13 Amperometric Titrations16.13.1 Amperometric Titrations with One Polarizable Indicator Electrode16.13.2 Biamperometric Titrations16.13.3 A Few Important Applications of Amperometry16.13.4 Oxygen Sensor16.13.5 Biosensors17. Thermal Analytical Methods17.1 Introduction17.2 Thermogravimetry (TG)17.2.1 TG Instrument17.2.2 Thermogram17.2.3 Applications of Thermogravimetry17.3 Differential Thermal Analysis (DTA)17.3.1 DTA Instrument17.3.2 DTA Thermogram17.4 Differential Scanning Calorimetry (DSC)17.4.1 DSC Instrument17.4.2 Applications of DTA and DSC17.5 Thermomechanical Analysis (TMA)17.5.1 TMA Instrument17.5.2 Applications of TMA17.6 Dynamic Mechanical Analysis (DMA)17.6.1 DMA Instrument17.6.2 DMA Applications17.7 Evolved Gas Analysis17.7.1 Pyrolysis Gas Chromatograph Instrument18. Radiochemical Methods of Analysis18.1 Introduction18.2 Origin of Radioactivity18.2.1 Decay Modes of Radioactive Isotopes18.2.2 Kinetics of Radioactive Decay Process18.2.3 Units of Radioactivity18.3 Measurement of Radioactivity18.3.1 Detectors Based on Ionization18.3.2 Detectors Based on Photo Effect18.4 Detector Based on Chemical Reaction18.5 amplifiers and Other Electronic Equipment18.6 Pulse Height Analyser18.7 Analytical Applications of Radioisotopes18.7.1 Isotope Dilution Method18.7.2 Activation Analysis18.7.3 Radioimmuno Assay18.7.4 Autoradiography19. Surface Analytical Methods19.1 Introduction19.2 Classification of Surface Analytical Methods19.3 Methods Based on Adsorption-desorption of Probe Molecules19.3.1 Physisorption19.3.2 Chemisorption19.4 Vibrational Spectroscopic Techniques for Surface Studies19.4.1 IR Spectroscopy19.4.3 Electron Energy Loss Spectroscopy19.4.4 Reflection-absorption Infrared Spectroscopy19.5 Electronic Spectroscopic Methods19.5.1 Electron Spectroscopy for Chemical Analysis19.5.2 Auger Electron Spectroscopy19.5.3 Ion Scattering Spectrometry19.5.4 Secondary Ion Mass Spectrometry19.6 X-ray Methods19.7 Thermal Methods19.7.1 Temperature Programmed Desorption19.7.2 Temperature Programmed Reduction19.7.3 Desorption Studies by TG, DTA and DSC