Introduction to Étale Cohomology by Günter TammeIntroduction to Étale Cohomology by Günter Tamme

Introduction to Étale Cohomology

byGünter TammeTranslated byM. Kolster

Paperback | September 28, 1994

Pricing and Purchase Info

$98.59 online 
$110.50 list price save 10%
Earn 493 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Étale Cohomology is one of the most important methods in modern Algebraic Geometry and Number Theory. It has, in the last decades, brought fundamental new insights in arithmetic and algebraic geometric problems with many applications and many important results. The book gives a short and easy introduction into the world of Abelian Categories, Derived Functors, Grothendieck Topologies, Sheaves, General Étale Cohomology, and Étale Cohomology of Curves.
Title:Introduction to Étale CohomologyFormat:PaperbackDimensions:195 pagesPublished:September 28, 1994Publisher:Springer Berlin HeidelbergLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3540571167

ISBN - 13:9783540571162


Table of Contents

0. Preliminaries.- §1. Abelian Categories.- (1.1) Categories and Functors.- (1.2) Additive Categories.- (1.3) Abelian Categories.- (1.4) Injective Objects.- §2. Homological Algebra in Abelian Categories.- (2.1) 3-Functors.- (2.2) Derived Functors.- (2.3) Spectral Sequences.- §3. Inductive Limits.- (3.1) Limit Functors.- (3.2) Exactness of Inductive Limits.- (3.3) Final Subcategories.- I. Topologies and Sheaves.- §1. Topologies.- (1.1) Preliminaries.- (1.2) Grothendieck's Notion of Topology.- (1.3) Examples.- §2. Abelian Presheaves on Topologies.- (2.1) The Category of Abelian Presheaves.- (2.2) ?ech-Cohomology.- (2.3) The Functors fp and fp.- §3. Abelian,Sheaves on Topologies.- (3.1) The Associated Sheaf of a Presheaf.- (3.2) The Category of Abelian Sheaves.- (3.3) Cohomology of Abelian Sheaves.- (3.4) The Spectral Sequences for ?ech Cohomology.- (3.5) Flabby Sheaves.- (3.6) The Functors fS and fs.- (3.7) The Leray Spectral Sequences.- (3.8) Localization.- (3.9) The Comparison Lemma.- (3.10) Noetherian Topologies.- (3.11) Commutation of the Functors Hq(U, ·) with Pseudofiltered Inductive Limits.- II. Étale Cohomology.- §1. The Étale Site of a Scheme.- (1.1) Étale Morphisms.- (1.2) The Étale Site.- (1.3) The Relation between Étale and Zariski Cohomology.- (1.4) The Functors f* and f*.- (1.5) The Restricted Étale Site.- §2. The Case X= spec(k).- §3. Examples of Étale Sheaves.- (3.1) Representable Sheaves.- (3.2) Étale Sheaves of Ox -Modules.- (3.3) Appendix: The Big Étale Site.- §4. The Theories of Artin-Schreier and of Kummer.- (4.1) The Groups Hq(X,(Ga)x).- (4.2) The Artin-Schreier Sequence.- (4.3) The Groups Hq(X,(Gm)x).- (4.4) The Kummer Sequence.- (4.5) The Sheaf of Divisors on Xét.- §5. Stalks of Étale Sheaves.- §6. Strict Localizations.- (6.1) Henselian Rings and Strictly Local Rings.- (6.2) Strict Localization of a Scheme.- (6.3) Étale Cohomology on Projective Limits of Schemes.- (6.4) The Stalks of Rqf*(F).- §7. The Artin Spectral Sequence.- §8. The Decomposition Theorem. Relative Cohomology.- (8.1) The Decomposition Theorem.- (8.2) The functors j! and i!.- (8.3) Relative Cohomology.- §9. Torsion Sheaves, Locally Constant Sheaves, Constructible Sheaves.- (9.1) Torsion Sheaves.- (9.2) Locally Constant Sheaves.- (9.3) Constructible Sheaves.- §10. Étale Cohomology of Curves.- (10.1) Skyscraper Sheaves.- (10.2) The Cohomological Dimension of Algebraic Curves.- (10.3) The Groups Hq(X,(Gm)x) and Hq(X,(?n)x).- (10.4) The Finiteness Theorem for Constructible Sheaves.- §11. General Theorems in Étale Cohomology Theory.- (11.1) The Comparison Theorem with Classical Cohomology.- (11.2) The Cohomological Dimension of Algebraic Schemes.- (11.3) The Base Change Theorem for Proper Morphisms.- (11.4) Finiteness Theorems.