Introduction To Nanoelectronic Single-electron Circuit Design, Second Edition by Jaap HoekstraIntroduction To Nanoelectronic Single-electron Circuit Design, Second Edition by Jaap Hoekstra

Introduction To Nanoelectronic Single-electron Circuit Design, Second Edition

byJaap Hoekstra

Hardcover | June 10, 2016

Pricing and Purchase Info

$112.63 online 
$175.00 list price
Earn 563 plum® points

Prices and offers may vary in store

Out of stock online

Not available in stores


Today, the concepts of single-electron tunneling (SET) are used to understand and model single-atom and single-molecule nanoelectronics. The characteristics of nanoelectronic devices, especially SET transistors, can be understood on the basis of the physics of nanoelectronic devices and circuit models. A circuit theory approach is necessary for considering possible integration with current microelectronic circuitry. To explain the properties and possibilities of SET devices, this book follows an approach to modeling these devices using electronic circuit theory. All models and equivalent circuits are derived from the first principles of circuit theory. Based on energy conservation, the circuit model of SET is an impulsive current source, and modeling distinguishes between bounded and unbounded currents. The Coulomb blockade is explained as a property of a single junction. In addition, this edition differs from the previous one by elaborating on the section on spice simulations and providing a spice simulation on the SET electron box circuit, including the spice netlist. Also, a complete, new proof of the two-capacitor problem in circuit theory is presented; the importance of this proof in understanding energy conservation in SET circuits cannot be underestimated. This book will be very useful for advanced undergraduate- and graduate-level students of electrical engineering and nanoelectronics and researchers in nanotechnology, nanoelectronic device physics, and computer science.

Only book modeling both single-electron tunneling and many electron tunneling from the points of view of electronics; starting from experiments, via a physics description, working towards a circuit description; and based on energy conservation, in electrical circuits, developing the impulse circuit model for single-electron tunneling.

Jaap Hoekstra obtained an MSc in physics from the University of Amsterdam in 1983 and a PhD in microelectronics from the Delft University of Technology in 1988. Since then he has been employed by the Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft University of Technology to teach semiconductor physics,...
Title:Introduction To Nanoelectronic Single-electron Circuit Design, Second EditionFormat:HardcoverDimensions:348 pages, 9.41 × 7.24 × 0.98 inPublished:June 10, 2016Publisher:Taylor and FrancisLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9814745561

ISBN - 13:9789814745567

Look for similar items by category:


Table of Contents

Introduction. Tunneling Experiments in Nanoelectronics. Current in Electrodynamics and Circuit Theory. Free Electrons in Quantum Mechanics. Current and Tunnel Current in Quantum Physics. Energy in Circuit Theory. Energy in the Switched Two-Capacitor Circuit. Impulse Circuit Model for Single-Electron Tunneling'Zero Tunneling Time. Impulse Circuit Model for Single-Electron Tunneling'Nonzero Tunneling Times. Generalizing the Theory to Multi-Junction Circuits. Single-Electron Tunneling Circuit Examples. Circuit Design Methodologies. More Potential Applications and Challenges.