Introduction To The Modern Theory Of Dynamical Systems by Anatole KatokIntroduction To The Modern Theory Of Dynamical Systems by Anatole Katok

Introduction To The Modern Theory Of Dynamical Systems

byAnatole Katok, Boris Hasselblatt

Paperback | December 28, 1996

Pricing and Purchase Info


Earn 465 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


This book provides a self-contained comprehensive exposition of the theory of dynamical systems. The book begins with a discussion of several elementary but crucial examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate and up.
Title:Introduction To The Modern Theory Of Dynamical SystemsFormat:PaperbackDimensions:824 pages, 9.21 × 6.14 × 1.65 inPublished:December 28, 1996Publisher:Cambridge University Press

The following ISBNs are associated with this title:

ISBN - 10:0521575575

ISBN - 13:9780521575577


Table of Contents

Part I. Examples and Fundamental Concepts; Introduction; 1. First examples; 2. Equivalence, classification, and invariants; 3. Principle classes of asymptotic invariants; 4. Statistical behavior of the orbits and introduction to ergodic theory; 5. Smooth invariant measures and more examples; Part II. Local Analysis and Orbit Growth; 6. Local hyperbolic theory and its applications; 7. Transversality and genericity; 8. Orbit growth arising from topology; 9. Variational aspects of dynamics; Part III. Low-Dimensional Phenomena; 10. Introduction: What is low dimensional dynamics; 11. Homeomorphisms of the circle; 12. Circle diffeomorphisms; 13. Twist maps; 14. Flows on surfaces and related dynamical systems; 15. Continuous maps of the interval; 16. Smooth maps of the interval; Part IV. Hyperbolic Dynamical Systems; 17. Survey of examples; 18. Topological properties of hyperbolic sets; 19. Metric structure of hyperbolic sets; 20. Equilibrium states and smooth invariant measures; Part V. Sopplement and Appendix; 21. Dynamical systems with nonuniformly hyperbolic behavior Anatole Katok and Leonardo Mendoza.

Editorial Reviews

"The notes section at the end of the book is complete and quite helpful. There are hints and answers provided for a good percentage of the problems in the book. The problems range from fairly straightforward ones to results that I remember reading in research papers over the last 10-20 years....I recommend the text as an exceptional reference..." Richard Swanson, SIAM Review