Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields by Hatice BoylanJacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields by Hatice Boylan

Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

byHatice Boylan

Paperback | December 16, 2014

Pricing and Purchase Info

$62.50

Earn 313 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
Title:Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number FieldsFormat:PaperbackDimensions:130 pagesPublished:December 16, 2014Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3319129155

ISBN - 13:9783319129150

Reviews

Table of Contents

Introduction.- Notations.- Finite Quadratic Modules.- Weil Representations of Finite Quadratic Modules.- Jacobi Forms over Totally Real Number Fields.- Singular Jacobi Forms.- Tables.- Glossary.

Editorial Reviews

"The classical theory of Jacobi forms, and its connections to elliptic modular forms, have been a constant subject of research for many decades. . this book is valuable contribution to the mathematical society, and serves as a welcoming invitation to anyone who finds interest in engaging him/herself in researching this beautiful new theory." (Shaul Zemel, zbMATH 1317.11002, 2015)