Kinetic Boltzmann, Vlasov and Related Equations

Other | June 17, 2011

byAlexander Sinitsyn, Alexander Sinitsyn, Eugene Dulov...

not yet rated|write a review

Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.

This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance.



  • Reviews the whole field from the beginning to today
  • Includes practical applications
  • Provides classical and modern (semi-analytical) solutions

Pricing and Purchase Info

$127.89 online
$166.00 list price (save 22%)
In stock online
Ships free on orders over $25

From the Publisher

Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of...

Format:OtherDimensions:320 pages, 1 × 1 × 1 inPublished:June 17, 2011Publisher:Elsevier ScienceLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0123877806

ISBN - 13:9780123877802

Customer Reviews of Kinetic Boltzmann, Vlasov and Related Equations

Reviews

Extra Content

Table of Contents

  1. Principal Concepts of Kinetic Equations
  2. Lagrangian Coordinates
  3. Vlasov-Maxwell and Vlasov-Einstein Equations
  4. Energetic Substitution
  5. Introduction in Mathematical Theory of Kinetic Equations
  6. On the Family of the Steady-State Solutions of Vlasov-Maxwell System
  7. Boundary Value Problems for the Vlasov-Maxwell System
  8. Bifurcation of Stationary Solutions of the Vlasov-Maxwell System
  9. Boltzmann Equation
  10. Discrete Models of Boltzmann Equation
  11. Method of Spherical Harmonics and Relaxation of Maxwellian Gas
  12. Discrete Boltzmann equation Models for Mixtures
  13. Quantum Hamiltonians and Kinetic Equations
  14. Modelling of the Limit Problem for the Magnetically Noninsulated Diode
  15. Generalized Liouville Equation and Approximate Orthogonal Decomposition Methods