Logarithmic Voltage-to-Time Converter for Analog-to-Digital Signal Conversion by Mauro SantosLogarithmic Voltage-to-Time Converter for Analog-to-Digital Signal Conversion by Mauro Santos

Logarithmic Voltage-to-Time Converter for Analog-to-Digital Signal Conversion

byMauro Santos, Jorge Guilherme, Nuno Horta

Hardcover | April 6, 2019

Pricing and Purchase Info


Earn 1,035 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


This book presents a novel logarithmic conversion architecture based on cross-coupled inverter. An overview of the current state of the art of logarithmic converters is given where most conventional logarithmic analog-to-digital converter architectures are derived or adapted from linear analog-to-digital converter architectures, implying the use of analog building blocks such as amplifiers. The conversion architecture proposed in this book differs from the conventional logarithmic architectures. Future possible studies on integrating calibration in the voltage to time conversion element and work on an improved conversion architecture derived from the architecture are also presented in this book.

Mauro Santos (IEEE S'08-M'18) concluded his PhD from Instituto Superior Tecnico, Lisbon in 2018 in the area of microelectronics. His research interests are mainly in analog-to-digital signal conversion, analog and mixed signal IC design and power electronics.Jorge Manuel Guilherme  is a professor at the Instituto Politecnico Tomar sinc...
Title:Logarithmic Voltage-to-Time Converter for Analog-to-Digital Signal ConversionFormat:HardcoverProduct dimensions:117 pages, 9.41 × 7.24 × 0.98 inShipping dimensions:9.41 × 7.24 × 0.98 inPublished:April 6, 2019Publisher:Springer NatureLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3030159779

ISBN - 13:9783030159771


Table of Contents

Chapter 1        Introduction

1.1       Nonlinear Data Conversion

1.2       Motivation

1.3       Research Goals

1.4       Innovative Contributions

1.5       Achievements

1.6       Document Structure

Chapter 2        Nonlinear A/D Converters

2.1       Floating Point Converters

2.2       Logarithmic Converters

2.2.1    Logarithmic Pipeline Converters

2.2.2    Two-Step Logarithmic Converters

2.3       Piecewise Linear Converters

2.4       Oversampled Converters

2.4.1    Delta Converters

2.4.2    Sigma-Delta Converters

2.5       Nonlinear Conversion Using Pulse Width Modulation

2.5.1    Modified Integrating ADC

2.5.2    PWM Average Approximation

2.6       Nonlinear Conversion Using a Lookup Table

2.7       Other Architectures

2.8       Performance Metrics and Converter Testing

2.9       Conclusions

Chapter 3        Proposed Logarithmic ADC

3.1       Proposed Logarithmic ADC Architecture

3.2       Voltage-to-Time Conversion Element

3.3       Regeneration detection

3.4       Sources of nonlinearity

3.4.1    Offset

3.4.2    S3 switch resistance

3.4.3    Regeneration detection circuitry

3.4.4    Thermal Noise

3.5       Architecture Variants

3.5.1    Multiple Simultaneous Conversions

3.5.2    Polarity and magnitude independent conversion

3.6       Time-to-Digital Converter

3.7       Conclusions

Chapter 4        Logarithmic VTC Design

4.1       Determination of key design parameters

4.1.1    Sampling capacitors

4.1.2    Total transconductance

4.1.3    Degeneration resistors

4.1.4    Sampling switches

4.1.5    Regeneration detection

4.2       Simulaton Results

4.2.1    Process variations

4.2.2    Input referred noise and offset

4.3       Conclusions

Chapter 5        Circuit and Layout Level Validation

5.1       Configuration chain

5.2       Frequency divider

5.3       Frequency output pad

5.4       Voltage-to-time conversion elements

5.5       Phase generator

5.6       Programmable delay block

5.7       Common mode voltage effect on the regeneration detection voltage

5.8       Demonstrator integrated circuit layout

5.9       Simulation results

5.10     Conclusions

Chapter 6        Evaluation of the Prototype

6.1       Test Platform

6.2       Test Description

6.3       Experimental Results

6.3.1    Performance comparison

6.4       Input range limitation

6.5       Conclusions

Chapter 7        Future Work and Conclusions

7.1       Conclusions

7.2       Future Work

7.2.1    Calibration

7.2.2    Improved Conversion Method