Machine Learning For Data Streams: with Practical Examples in MOA

March 2, 2018|
Machine Learning For Data Streams: with Practical Examples in MOA by Albert Bifet
$65.17 
$73.00 save 10%
Hardcover
Earn 326 plum® points
Buy Online
Ship to an address
Ships within 1-2 weeks.Free shipping on orders over $35
Pick up in store
To see if pickup is available,
Buy In Store
Not sold in stores
Prices and offers may vary in store

about

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.

Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Albert Bifet is Professor of Computer Science at Télécom ParisTech.Ricard Gavaldà is Professor of Computer Science at the Politècnica de Catalunya, Barcelona.Geoff Holmes is Professor and Dean of Computing at the University of Waikato in Hamilton, New Zealand.Bernhard Pfahringer is Professor of Computer Science at t...
Loading
Title:Machine Learning For Data Streams: with Practical Examples in MOA
Format:Hardcover
Product dimensions:288 pages, 9.38 X 7.19 X 0.9 in
Shipping dimensions:288 pages, 9.38 X 7.19 X 0.9 in
Published:March 2, 2018
Publisher:MIT Press
Language:English
Appropriate for ages:All ages
ISBN - 13:9780262037792

Look for similar items by category:

Recently Viewed
|