Markov Chains and Invariant Probabilities by Onésimo Hernández-lermaMarkov Chains and Invariant Probabilities by Onésimo Hernández-lerma

Markov Chains and Invariant Probabilities

byOnésimo Hernández-lerma, Jean B. Lasserre

Paperback | October 23, 2012

Pricing and Purchase Info

$129.29 online 
$137.95 list price save 6%
Earn 646 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Title:Markov Chains and Invariant ProbabilitiesFormat:PaperbackDimensions:208 pagesPublished:October 23, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034894082

ISBN - 13:9783034894081

Look for similar items by category:

Reviews

Table of Contents

1 Preliminaries.- 1.1 Introduction.- 1.2 Measures and Functions.- 1.3 Weak Topologies.- 1.4 Convergence of Measures.- 1.5 Complements.- 1.6 Notes.- I Markov Chains and Ergodicity.- 2 Markov Chains and Ergodic Theorems.- 2.1 Introduction.- 2.2 Basic Notation and Definitions.- 2.3 Ergodic Theorems.- 2.4 The Ergodicity Property.- 2.5 Pathwise Results.- 2.6 Notes.- 3 Countable Markov Chains.- 3.1 Introduction.- 3.2 Classification of States and Class Properties.- 3.3 Limit Theorems.- 3.4 Notes.- 4 Harris Markov Chains.- 4.1 Introduction.- 4.2 Basic Definitions and Properties.- 4.3 Characterization of Harris recurrence.- 4.4 Sufficient Conditions for P.H.R.- 4.5 Harris and Doeblin Decompositions.- 4.6 Notes.- 5 Markov Chains in Metric Spaces.- 5.1 Introduction.- 5.2 The Limit in Ergodic Theorems.- 5.3 Yosida's Ergodic Decomposition.- 5.4 Pathwise Results.- 5.5 Proofs.- 5.6 Notes.- 6 Classification of Markov Chains via Occupation Measures.- 6.1 Introduction.- 6.2 A Classification.- 6.3 On the Birkhoff Individual Ergodic Theorem.- 6.4 Notes.- II Further Ergodicity Properties.- 7 Feller Markov Chains.- 7.1 Introduction.- 7.2 Weak-and Strong-Feller Markov Chains.- 7.3 Quasi Feller Chains.- 7.4 Notes.- 8 The Poisson Equation.- 8.1 Introduction.- 8.2 The Poisson Equation.- 8.3 Canonical Pairs.- 8.4 The Cesàro-Averages Approach.- 8.5 The Abelian Approach.- 8.6 Notes.- 9 Strong and Uniform Ergodicity.- 9.1 Introduction.- 9.2 Strong and Uniform Ergodicity.- 9.3 Weak and Weak Uniform Ergodicity.- 9.4 Notes.- III Existence and Approximation of Invariant Probability Measures.- 10 Existence of Invariant Probability Measures.- 10.1 Introduction and Statement of the Problems.- 10.2 Notation and Definitions.- 10.3 Existence Results.- 10.4 Markov Chains in Locally Compact Separable Metric Spaces.- 10.5 Other Existence Results in Locally Compact Separable Metric Spaces.- 10.6 Technical Preliminaries.- 10.7 Proofs.- 10.8 Notes.- 11 Existence and Uniqueness of Fixed Points for Markov Operators.- 11.1 Introduction and Statement of the Problems.- 11.2 Notation and Definitions.- 11.3 Existence Results.- 11.4 Proofs.- 11.5 Notes.- 12 Approximation Procedures for Invariant Probability Measures.- 12.1 Introduction.- 12.2 Statement of the Problem and Preliminaries.- 12.3 An Approximation Scheme.- 12.4 A Moment Approach for a Special Class of Markov Chains.- 12.5 Notes.

Editorial Reviews

"It should be stressed that an important part of the results presented is due to the authors. . . . In the reviewer's opinion, this is an elegant and most welcome addition to the rich literature of Markov processes."

--MathSciNet