Mathematical Methods in Tomography: Proceedings of a Conference held in Oberwolfach, Germany, 5-11 June, 1990 by Gabor T. HermanMathematical Methods in Tomography: Proceedings of a Conference held in Oberwolfach, Germany, 5-11 June, 1990 by Gabor T. Herman

Mathematical Methods in Tomography: Proceedings of a Conference held in Oberwolfach, Germany, 5-11…

EditorGabor T. Herman, Alfred K. Louis, Frank Natterer

Paperback | January 15, 1992

Pricing and Purchase Info

$90.95

Earn 455 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

The conference was devoted to the discussion of present andfuture techniques in medical imaging, including 3D x-ray CT,ultrasound and diffraction tomography, and biomagnetic ima-ging. The mathematical models, their theoretical aspects andthe development of algorithms were treated. The proceedingscontains surveys on reconstruction in inverse obstacle scat-tering, inversion in 3D, and constrained least squares pro-blems.Research papers include besides the mentioned imagingtechniques presentations on image reconstruction in Hilbertspaces, singular value decompositions, 3D cone beam recon-struction, diffuse tomography, regularization of ill-posedproblems, evaluation reconstruction algorithms and applica-tions in non-medical fields.Contents: Theoretical Aspects:J.Boman: Helgason' s support theorem for Radon transforms-anewproof and a generalization -P.Maass: Singular value de-compositions for Radon transforms- W.R.Madych: Image recon-struction in Hilbert space -R.G.Mukhometov: A problem of in-tegral geometry for a family of rays with multiple reflec-tions -V.P.Palamodov: Inversion formulas for the three-di-mensional ray transform - Medical Imaging Techniques:V.Friedrich: Backscattered Photons - are they useful for asurface - near tomography - P.Grangeat: Mathematical frame-work of cone beam 3D reconstruction via the first derivativeof the Radon transform -P.Grassin,B.Duchene,W.Tabbara: Dif-fraction tomography: some applications and extension to 3Dultrasound imaging -F.A.Gr}nbaum: Diffuse tomography: a re-fined model -R.Kress,A.Zinn: Three dimensional reconstruc-tions in inverse obstacle scattering -A.K.Louis: Mathemati-cal questions of a biomagnetic imaging problem - InverseProblems and Optimization: Y.Censor: On variable blockalgebraic reconstruction techniques -P.P.Eggermont: OnVolterra-Lotka differential equations and multiplicativealgorithms for monotone complementary problems
Title:Mathematical Methods in Tomography: Proceedings of a Conference held in Oberwolfach, Germany, 5-11…Format:PaperbackDimensions:280 pagesPublished:January 15, 1992Publisher:Springer Berlin HeidelbergLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3540549706

ISBN - 13:9783540549703

Look for similar items by category:

Reviews

Table of Contents

Helgason's support theorem for Radon transforms - A new proof and a generalization.- Singular value decompositions for Radon transforms.- Image reconstruction in Hilbert space.- A problem of integral geometry for a family of rays with multiple reflections.- Inversion formulas for the three-dimensional ray transform.- Backscattered photons - Are they useful for a surface-near tomography?.- Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform.- Diffraction tomography some applications and extension to 3-D ultrasound imaging.- Diffuse tomography: A refined model.- Three dimensional reconstructions in inverse obstacle scattering.- Mathematical questions of a biomagnetic imaging problem.- On variable block algebraic reconstruction techniques.- On Volterra-Lotka differential equations and multiplicative algorithms for monotone complementarity problems.- Constrained regularized least squares problems.- Multiplicative iterative methods in computed tomography.- Remark on the informative content of few measurements.- Theorems for the number of zeros of the projection radial modulators of the 2D exponential radon transform.- Evaluation of reconstruction algorithms.- Radon transform and analog coding.- Determination of the specific density of an aerosol through tomography.- Computed tomography and rockets.