Mathematical Proofs: A Transition To Advanced Mathematics by Gary ChartrandMathematical Proofs: A Transition To Advanced Mathematics by Gary Chartrand

Mathematical Proofs: A Transition To Advanced Mathematics

byGary Chartrand, Albert D. Polimeni, Ping Zhang

Hardcover | September 17, 2012

Pricing and Purchase Info


Earn 1,020 plum® points

Prices and offers may vary in store


Ships within 1-2 weeks

Ships free on orders over $25

Not available in stores


Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses.

Gary Chartrand is Professor Emeritus of Mathematics at Western Michigan University. He received his Ph.D. in mathematics from Michigan State University. His research is in the area of graph theory. Professor Chartrand has authored or co-authored more than 275 research papers and a number of textbooks in discrete mathematics and graph...
Title:Mathematical Proofs: A Transition To Advanced MathematicsFormat:HardcoverDimensions:416 pages, 9.3 × 7.5 × 0.8 inPublished:September 17, 2012Publisher:Pearson EducationLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0321797094

ISBN - 13:9780321797094


Table of Contents

0. Communicating Mathematics

Learning Mathematics

What Others Have Said About Writing

Mathematical Writing

Using Symbols

Writing Mathematical Expressions

Common Words and Phrases in Mathematics

Some Closing Comments About Writing


1. Sets

1.1. Describing a Set

1.2. Subsets

1.3. Set Operations

1.4. Indexed Collections of Sets

1.5. Partitions of Sets

1.6. Cartesian Products of Sets

Exercises for Chapter 1


2. Logic

2.1. Statements

2.2. The Negation of a Statement

2.3. The Disjunction and Conjunction of Statements

2.4. The Implication

2.5. More On Implications

2.6. The Biconditional

2.7. Tautologies and Contradictions

2.8. Logical Equivalence

2.9. Some Fundamental Properties of Logical Equivalence

2.10. Quantified Statements

2.11. Characterizations of Statements

Exercises for Chapter 2


3. Direct Proof and Proof by Contrapositive

3.1. Trivial and Vacuous Proofs

3.2. Direct Proofs

3.3. Proof by Contrapositive

3.4. Proof by Cases

3.5. Proof Evaluations

Exercises for Chapter 3


4. More on Direct Proof and Proof by Contrapositive

4.1. Proofs Involving Divisibility of Integers

4.2. Proofs Involving Congruence of Integers

4.3. Proofs Involving Real Numbers

4.4. Proofs Involving Sets

4.5. Fundamental Properties of Set Operations

4.6. Proofs Involving Cartesian Products of Sets

Exercises for Chapter 4


5. Existence and Proof by Contradiction

5.1. Counterexamples

5.2. Proof by Contradiction

5.3. A Review of Three Proof Techniques

5.4. Existence Proofs

5.5. Disproving Existence Statements

Exercises for Chapter 5


6. Mathematical Induction

6.1 The Principle of Mathematical Induction

6.2 A More General Principle of Mathematical Induction

6.3 Proof By Minimum Counterexample

6.4 The Strong Principle of Mathematical Induction

Exercises for Chapter 6


7. Prove or Disprove

7.1 Conjectures in Mathematics

7.2 Revisiting Quantified Statements

7.3 Testing Statements

Exercises for Chapter 7


8. Equivalence Relations

8.1 Relations

8.2 Properties of Relations

8.3 Equivalence Relations

8.4 Properties of Equivalence Classes

8.5 Congruence Modulo n

8.6 The Integers Modulo n

Exercises for Chapter 8


9. Functions

9.1 The Definition of Function

9.2 The Set of All Functions from A to B

9.3 One-to-one and Onto Functions

9.4 Bijective Functions

9.5 Composition of Functions

9.6 Inverse Functions

9.7 Permutations

Exercises for Chapter 9


10. Cardinalities of Sets

10.1 Numerically Equivalent Sets

10.2 Denumerable Sets

10.3 Uncountable Sets

10.4 Comparing Cardinalities of Sets

10.5 The Schröder-Bernstein Theorem

Exercises for Chapter 10


11. Proofs in Number Theory

11.1 Divisibility Properties of Integers

11.2 The Division Algorithm

11.3 Greatest Common Divisors

11.4 The Euclidean Algorithm

11.5 Relatively Prime Integers

11.6 The Fundamental Theorem of Arithmetic

11.7 Concepts Involving Sums of Divisors

Exercises for Chapter 11


12. Proofs in Calculus

12.1 Limits of Sequences

12.2 Infinite Series

12.3 Limits of Functions

12.4 Fundamental Properties of Limits of Functions

12.5 Continuity

12.6 Differentiability

Exercises for Chapter 12


13. Proofs in Group Theory

13.1 Binary Operations

13.2 Groups

13.3 Permutation Groups

13.4 Fundamental Properties of Groups

13.5 Subgroups

13.6 Isomorphic Groups

Exercises for Chapter 13


14. Proofs in Ring Theory (Online)

14.1 Rings

14.2 Elementary Properties of Rings

14.3 Subrings

14.4 Integral Domains

14.5 Fields

Exercises for Chapter 14


15. Proofs in Linear Algebra (Online)

15.1 Properties of Vectors in 3-Space

15.2 Vector Spaces

15.3 Matrices

15.4 Some Properties of Vector Spaces

15.5 Subspaces

15.6 Spans of Vectors

15.7 Linear Dependence and Independence

15.8 Linear Transformations

15.9 Properties of Linear Transformations

Exercises for Chapter 15


16. Proofs in Topology (Online)

16.1 Metric Spaces

16.2 Open Sets in Metric Spaces

16.3 Continuity in Metric Spaces

16.4 Topological Spaces

16.5 Continuity in Topological Spaces

Exercises for Chapter 16


Answers and Hints to Odd-Numbered Section Exercises


Index of Symbols

Index of Mathematical Terms