Nanophysics: Coherence and Transport: Lecture Notes of the Les Houches Summer School 2004

Other | August 1, 2005

byBouchiat, Hélène, Hélène Bouchiat

not yet rated|write a review
The developments of nanofabrication in the past years have enabled the design of electronic systems that exhibit spectacular signatures of quantum coherence. Nanofabricated quantum wires and dots containing a small number of electrons are ideal experimental playgrounds for probing electron-electron interactions and their interplay with disorder. Going down to even smaller scales, molecules such as carbon nanotubes, fullerenes or hydrogen molecules can now be inserted in nanocircuits. Measurements of transport through a single chain of atoms have been performed as well. Much progress has also been made in the design and fabrication of superconducting and hybrid nanostructures, be they normal/superconductor or ferromagnetic/superconductor. Quantum coherence is then no longer that of individual electronic states, but rather that of a superconducting wavefunction of a macroscopic number of Cooper pairs condensed in the same quantum mechanical state. Beyond the study of linear response regime, the physics of non-equilibrium transport (including non-linear transport, rectification of a high frequency electric field as well as shot noise) has received much attention, with significant experimental and theoretical insights. All these quantities exhibit very specific signatures of the quantum nature of transport, which cannot be obtained from basic conductance measurements.

Basic concepts and analytical tools needed to understand this new physics are presented in a series of theoretical fundamental courses, in parallel with more phenomenological ones where physics is discussed in a less formal way and illustrated by many experiments.

· Electron-electron interactions in one-dimensional quantum transport
· Coulomb Blockade and Kondo physics in quantum dots
· Out of equilibrium noise and quantum transport
· Andreev reflection and subgap nonlinear transport in hybrid N/S nanosructures.
· Transport through atomic contacts
· Solid state Q-bits
· Written by leading experts in the field, both theorists and experimentalists

Pricing and Purchase Info

$93.99 online
$121.98 list price (save 22%)
In stock online
Ships free on orders over $25

From the Publisher

The developments of nanofabrication in the past years have enabled the design of electronic systems that exhibit spectacular signatures of quantum coherence. Nanofabricated quantum wires and dots containing a small number of electrons are ideal experimental playgrounds for probing electron-electron interactions and their interplay wit...

Jean Dalibard works in the field of atomic physics and quantum optics. His recent activities is centered on the physics of cold quantum gases, in particular Bose-Einstein condensation.
Format:OtherDimensions:640 pages, 1 × 1 × 1 inPublished:August 1, 2005Publisher:Elsevier ScienceLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0080461247

ISBN - 13:9780080461243

Customer Reviews of Nanophysics: Coherence and Transport: Lecture Notes of the Les Houches Summer School 2004

Reviews

Extra Content

Table of Contents

Lecturers / Seminar speakers / Participants / Preface
Course 1. Fundamental aspects of electron correlations and quantum transport in one-dimensional systems (Dmitrii L. Maslov)
Seminar 1. Impurity in the Tomonaga-Luttinger model:
A functional integral approach (I.V. Lerner
and I.V. Yurkevich)
Course 2. Novel phenomena in double layer twodimensional electron systems (J.P. Eisenstein)
Course 3. Many-body theory of non-equilibrium
systems (Alex Kamenev)
Course 4. Non-linear quantum coherence effects in
driven mesoscopic systems (V.E. Kravtsov)
Course 5. Noise in mesoscopic physics (T. Martin)
Seminar 2. Higher moments of noise (Bertrand Reulet)
Course 6. Electron subgap transport in hybrid systems combining superconductors with normal or
ferromagnetic metals (F.W.J. Hekking)
Course 7. Low-temperature transport through a quantum dot (Leonid I. Glazman and Michael Pustilnik)
Seminar 3. Transport through quantum point contacts (Yigal Meir)
Course 8. Transport at the atomic scale: Atomic and
molecular contacts (A. Levy Yeyati and J.M. van Ruitenbeek)
Course 9. Solid State Quantum Bit Circuits (Daniel Estève and Denis Vion)
Abstracts of seminars presented at the School