Nanotechnology Applications For Tissue Engineering by Sabu ThomasNanotechnology Applications For Tissue Engineering by Sabu Thomas

Nanotechnology Applications For Tissue Engineering

bySabu ThomasEditorYves Grohens, Neethu Ninan

Hardcover | January 8, 2015

Pricing and Purchase Info

$190.29 online 
$198.50 list price
Earn 951 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Tissue engineering involves seeding of cells on bio-mimicked scaffolds providing adhesive surfaces. Researchers though face a range of problems in generating tissue which can be circumvented by employing nanotechnology. It provides substrates for cell adhesion and proliferation and agents for cell growth and can be used to create nanostructures and nanoparticles to aid the engineering of different types of tissue. Written by renowned scientists from academia and industry, this book covers the recent developments, trends and innovations in the application of nanotechnologies in tissue engineering and regenerative medicine. It provides information on methodologies for designing and using biomaterials to regenerate tissue, on novel nano-textured surface features of materials (nano-structured polymers and metals e.g.) as well as on theranostics, immunology and nano-toxicology aspects. In the book also explained are fabrication techniques for production of scaffolds to a series of tissue-specific applications of scaffolds in tissue engineering for specific biomaterials and several types of tissue (such as skin bone, cartilage, vascular, cardiac, bladder and brain tissue). Furthermore, developments in nano drug delivery, gene therapy and cancer nanotechonology are described. The book helps readers to gain a working knowledge about the nanotechnology aspects of tissue engineering and will be of great use to those involved in building specific tissue substitutes in reaching their objective in a more efficient way. It is aimed for R&D and academic scientists, lab engineers, lecturers and PhD students engaged in the fields of tissue engineering or more generally regenerative medicine, nanomedicine, medical devices, nanofabrication, biofabrication, nano- and biomaterials and biomedical engineering.

  • Provides state-of-the-art knowledge on how nanotechnology can help tackling known problems in tissue engineering
  • Covers materials design, fabrication techniques for tissue-specific applications as well as immunology and toxicology aspects
  • Helps scientists and lab engineers building tissue substitutes in a more efficient way
Professor Thomas is the Director of the International and Interuniversity Centre for Nanoscience and Nanotechnology and full professor of Polymer Science and Engineering at the School of Chemical Sciences of Mahatma Gandhi University, Kottayam, Kerala, India. He is an outstanding leader with sustained international acclaims for his wor...
Title:Nanotechnology Applications For Tissue EngineeringFormat:HardcoverDimensions:336 pages, 9.41 × 7.24 × 0.98 inPublished:January 8, 2015Publisher:William Andrew PublishingLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:032332889X

ISBN - 13:9780323328890

Look for similar items by category:


Table of Contents

1. Nanomedicine and Tissue Engineering 2. Design of biomaterials using nanotechnlogy 3. Electrospinning of polymers for tissue engineering. 4. Biomimetic nanofibers for muskuloskeletal tissue engineering 5. Hydrogels Promising candidates for tissue engineering 6. 3D scaffolding for pancreatic islet replacement 7. Scaffolds with antibacterial properties 8. Dermal tissue engineering: Current trends 9. Chitosan and its application as tissue engineering scaffolds 10. Cell encapsulation in self-assembled hydrogel matrix 11. Nanotechnology enabled drug delivery for cancer therapy 12. Nanomedicine in Theranostics 13. Upconversion nanoparticles 14. Gold nanoparticles for cancer drug delivery 15. Role of nanogenotoxicology studies in safety evaluation of nanomaterials 16. Toxicology considerations in nanomedicine 17. Future of nanotechnology in tissue engineering