Nonlinear Analysis And Semilinear Elliptic Problems by Antonio AmbrosettiNonlinear Analysis And Semilinear Elliptic Problems by Antonio Ambrosetti

Nonlinear Analysis And Semilinear Elliptic Problems

byAntonio Ambrosetti, Andrea Malchiodi

Hardcover | January 15, 2007

Pricing and Purchase Info


Earn 539 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Many problems in science and engineering are described by nonlinear differential equations, which can be notoriously difficult to solve. Through the interplay of topological and variational ideas, methods of nonlinear analysis are able to tackle such fundamental problems. This graduate text explains some of the key techniques in a way that will be appreciated by mathematicians, physicists and engineers. Starting from elementary tools of bifurcation theory and analysis, the authors cover a number of more modern topics from critical point theory to elliptic partial differential equations. A series of Appendices give convenient accounts of a variety of advanced topics that will introduce the reader to areas of current research. The book is amply illustrated and many chapters are rounded off with a set of exercises.
Antonio Ambrosetti is a Professor at SISSA, Trieste. Andrea Malchiodi is an Associate Professor at SISSA, Trieste.
Title:Nonlinear Analysis And Semilinear Elliptic ProblemsFormat:HardcoverDimensions:328 pages, 8.98 × 5.98 × 0.83 inPublished:January 15, 2007Publisher:Cambridge University PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0521863201

ISBN - 13:9780521863209


Table of Contents

Preface; 1. Preliminaries; Part I. Topological Methods: 2. A primer on bifurcation theory; 3. Topological degree, I; 4. Topological degree, II: global properties; Part II. Variational Methods, I: 5. Critical points: extrema; 6. Constrained critical points; 7. Deformations and the Palais-Smale condition; 8. Saddle points and min-max methods; Part III. Variational Methods, II: 9. Lusternik-Schnirelman theory; 10. Critical points of even functionals on symmetric manifolds; 11. Further results on Elliptic Dirichlet problems; 12. Morse theory; Part IV. Appendices: Appendix 1. Qualitative results; Appendix 2. The concentration compactness principle; Appendix 3. Bifurcation for problems on Rn; Appendix 4. Vortex rings in an ideal fluid; Appendix 5. Perturbation methods; Appendix 6. Some problems arising in differential geometry; Bibliography; Index.

Editorial Reviews

'In the reviewer's opinion, this book can serve very well as a textbook in topological and variational methods in nonlinear analysis. Even researchers working in this field might find some interesting material (at least the reviewer did).' Zentralblatt MATH