Numerical Methods and Optimization in Finance by Manfred GilliNumerical Methods and Optimization in Finance by Manfred Gilli

Numerical Methods and Optimization in Finance

byManfred Gilli, Dietmar Maringer, Enrico Schumann

Hardcover | July 11, 2011

Pricing and Purchase Info

$135.02 online 
$144.95 list price save 6%
Earn 675 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


This book describes computational finance tools. It covers fundamental numerical analysis and computational techniques, such as option pricing, and gives special attention to simulation and optimization. Many chapters are organized as case studies around portfolio insurance and risk estimation problems. In particular, several chapters explain optimization heuristics and how to use them for portfolio selection and in calibration of estimation and option pricing models. Such practical examples allow readers to learn the steps for solving specific problems and apply these steps to others. At the same time, the applications are relevant enough to make the book a useful reference. Matlab and R sample code is provided in the text and can be downloaded from the book's website.

  • Shows ways to build and implement tools that help test ideas
  • Focuses on the application of heuristics; standard methods receive limited attention
  • Presents as separate chapters problems from portfolio optimization, estimation of econometric models, and calibration of option pricing models
Manfred Gilli is Professor emeritus at the Department of Econometrics (now Economics) at the University of Geneva, Switzerland, where he taught numerical methods in economics and finance. His main research interests include numerical solution of large and sparse systems of equations, parallel computing, heuristic optimization technique...
Title:Numerical Methods and Optimization in FinanceFormat:HardcoverDimensions:600 pages, 9.21 × 6.13 × 0.98 inPublished:July 11, 2011Publisher:Academic PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0123756626

ISBN - 13:9780123756626


Table of Contents

1. Introduction

I. Fundamentals

2. Numerical Analysis in a Nutshell

3. Linear Equations and Least-Squares Problems

4. Finite Difference Methods

5. Binomial Trees

II Simulation

6. Generating Random Numbers

7. Modelling Dependencies

8. A Gentle Introduction to Financial Simulation

9. Financial Simulation at Work: Some Case Studies

III Optimization

10. Optimization Problems in Finance

11. Basic Methods

12. Heuristic Methods in a Nutshell

13. Portfolio Optimization

14. Econometric Models

15. Calibrating Option Pricing Models

Editorial Reviews

"This book aims at providing guidance which is practical and useful for practitioners in finance with emphasis on computational techniques which are manageable by modern day desktop personal computers' processing power when building, testing, comparing and using mathematical and econometric models of finance in the pursuit of analysis of actual financial market data in day to day activities of financial analysts, be they students of courses in finance programs or analysts in financial institutions."--Zentralblatt MATH 2012-1236-91001 "With as much rigor as can be mastered by anyone in the still-developing field of computational finance and a sense of humor, the authors unravel its mysteries. The presentations are clear and the models are practical --- these are the two ingredients that make for a valuable book in this field. The book is both practical in scope and rigorous on its theoretical foundations. It  is a must for anyone who needs to apply quantitative methods for financial planning --- and who doesn't need to in our days?"--Stavros A. Zenios, University of Cyprus and the Wharton Financial Institutions Center "Numerical Methods and Optimization in Finance is an excellent introduction to computational science. The combination of methodology, software, and examples allows the reader to quickly grasp and apply serious computational ideas."--Kenneth L. Judd, Hoover Institution, Stanford University