Numerical Methods In Computational Electrodynamics: Linear Systems In Practical Applications by Ursula van RienenNumerical Methods In Computational Electrodynamics: Linear Systems In Practical Applications by Ursula van Rienen

Numerical Methods In Computational Electrodynamics: Linear Systems In Practical Applications

byUrsula van Rienen

Paperback | December 12, 2000

Pricing and Purchase Info

$223.69 online 
$283.95 list price save 21%
Earn 1,118 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

treated in more detail. They are just specimen of larger classes of schemes. Es­ sentially, we have to distinguish between semi-analytical methods, discretiza­ tion methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis func­ tions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary condi­ tions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some ap­ plications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4).
Title:Numerical Methods In Computational Electrodynamics: Linear Systems In Practical ApplicationsFormat:PaperbackDimensions:375 pagesPublished:December 12, 2000Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3540676295

ISBN - 13:9783540676294

Reviews

Table of Contents

1.Classical Electrodynamics.- 2. Numerical Field Theory.- 3. Numerical Treatment of Linear Systems.- 4. Applications from Electrical Engineering.- 5. Applications from Accelerator Physics.- Summary.- References.- Symbols.