Paleontological Data Analysis by Øyvind HammerPaleontological Data Analysis by Øyvind Hammer

Paleontological Data Analysis

byØyvind Hammer, David A. T. Harper

Paperback | November 4, 2005

Pricing and Purchase Info


Earn 735 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


During the last 10 years numerical methods have begun to dominate paleontology. These methods now reach far beyond the fields of morphological and phylogenetic analyses to embrace biostratigraphy, paleobiogeography, and paleoecology. Paleontological Data Analysis explains the key numerical techniques in paleontology, and the methodologies employed in the software packages now available.
  • Following an introduction to numerical methodologies in paleontology, and to univariate and multivariate techniques (including inferential testing), there follow chapters on morphometrics, phylogenetic analysis, paleobiogeography and paleoecology, time series analysis, and quantitative biostratigraphy
  • Each chapter describes a range of techniques in detail, with worked examples, illustrations, and appropriate case histories
  • Describes the purpose, type of data required, functionality, and implementation of each technique, together with notes of caution where appropriate
  • The book and the accompanying PAST software package (see are important investigative tools in a rapidly developing field characterized by many exciting new discoveries and innovative techniques
  • An invaluable tool for all students and researchers involved in quantitative paleontology
  • Dr Øyvind Hammer is currently a Researcher in Paleontology at the Geological Museum in Oslo, and in Geobiology at the research center “Physics of Geological Processes”. In addition to a number of research publications, he is the author of the popular data-analysis software PAST.David Harper is a leading expert on fossil brachiopods and...
    Title:Paleontological Data AnalysisFormat:PaperbackDimensions:368 pages, 9.6 × 6.8 × 0.8 inPublished:November 4, 2005Publisher:WileyLanguage:English

    The following ISBNs are associated with this title:

    ISBN - 10:1405115440

    ISBN - 13:9781405115445

    Look for similar items by category:


    Table of Contents



    1 Introduction.

    1.1 The nature of paleontological data.

    1.2 Advantages and pitfalls of paleontological data analysis.

    1.3 Software.

    2 Basic statistical methods.

    2.1 Introduction.

    2.2 Statistical distributions.

    2.3 Shapiro–Wilk test for normal distribution.

    2.4 F test for equality of variances.

    2.5 Student's t test and Welch test for equality of means.

    2.6 Mann–Whitney U test for equality of medians.

    2.7 Kolmogorov–Smirnov test for equality of distributions.

    2.8 Permutation and resampling.

    2.9 One-way ANOVA.

    2.10 Kruskal–Wallis test.

    2.11 Linear correlation.

    2.12 Non-parametric tests for correlation.

    2.13 Linear regression.

    2.14 Reduced major axis regression.

    2.15 Nonlinear curve fitting.

    2.16 Chi-square test.

    3 Introduction to multivariate data analysis.

    3.1 Approaches to multivariate data analysis.

    3.2 Multivariate distributions.

    3.3 Parametric multivariate tests.

    3.4 Non-parametric multivariate tests.

    3.5 Hierarchical cluster analysis.

    3.5 K-means cluster analysis.

    4 Morphometrics.

    4.1 Introduction.

    4.2 The allometric equation.

    4.3 Principal components analysis (PCA).

    4.4 Multivariate allometry.

    4.5 Discriminant analysis for two groups.

    4.6 Canonical variate analysis (CVA).

    4.7 MANOVA.

    4.8 Fourier shape analysis.

    4.9 Elliptic Fourier analysis.

    4.10 Eigenshape analysis.

    4.11 Landmarks and size measures.

    4.12 Procrustean fitting.

    4.13 PCA of landmark data.

    4.14 Thin-plate spline deformations.

    4.15 Principal and partial warps.

    4.16 Relative warps.

    4.17 Regression of partial warp scores.

    4.18 Disparity measures.

    4.19 Point distribution statistics.

    4.20 Directional statistics.

    Case study: The ontogeny of a Silurian trilobite.

    5 Phylogenetic analysis.

    5.1 Introduction.

    5.2 Characters.

    5.3 Parsimony analysis.

    5.4 Character state reconstruction.

    5.5 Evaluation of characters and tree topologies.

    5.6 Consensus trees.

    5.7 Consistency index.

    5.8 Retention index.

    5.9 Bootstrapping.

    5.10 Bremer support.

    5.11 Stratigraphical congruency indices.

    5.12 Phylogenetic analysis with Maximum Likelihood.

    Case study: The systematics of heterosporous ferns.

    6 Paleobiogeography and paleoecology.

    6.1 Introduction.

    6.2 Diversity indices.

    6.3 Taxonomic distinctness.

    6.4 Comparison of diversity indices.

    6.5 Abundance models.

    6.6 Rarefaction.

    6.7 Diversity curves.

    6.8 Size-frequency and survivorship curves.

    6.9 Association similarity indices for presence/absence data.

    6.10 Association similarity indices for abundance data.

    6.11 ANOSIM and NPMANOVA.

    6.12 Correspondence analysis.

    6.13 Principal Coordinates analysis (PCO).

    6.14 Non-metric Multidimensional Scaling (NMDS).

    6.15 Seriation.

    Case study: Ashgill brachiopod paleocommunities from East China.

    7 Time series analysis.

    7.1 Introduction.

    7.2 Spectral analysis.

    7.3 Autocorrelation.

    7.4 Cross-correlation.

    7.5 Wavelet analysis.

    7.6 Smoothing and filtering.

    7.7 Runs test.

    Case study: Sepkoski’s generic diversity curve for the Phanerozoic.

    8 Quantitative biostratigraphy.

    8.1 Introduction.

    8.2 Parametric confidence intervals on stratigraphic ranges.

    8.3 Non-parametric confidence intervals on stratigraphic ranges.

    8.4 Graphic correlation.

    8.5 Constrained optimisation.

    8.6 Ranking and scaling.

    8.7 Unitary Associations.

    8.8 Biostratigraphy by ordination.

    8.9 What is the best method for quantitative biostratigraphy?.

    Appendix A: Plotting techniques.

    Appendix B: Mathematical concepts and notation.



    Editorial Reviews

    "I would definitely encourage students, later-year undergraduate or graduate, embarking on palaeontological research involving more than the most trivial statistics to buy this book, not just rely on the library copy." Newsletter of Micropalaeontology 'I warmly encourage all graduate students, post-docs, and academics in palaeontology to acquire a copy - and to use it.' Geology Today "All in all this is to my mind and excellent book." Geological Magazine