Pattern Recognition: Concepts, Methods and Applications by J.p. Marques De SPattern Recognition: Concepts, Methods and Applications by J.p. Marques De S

Pattern Recognition: Concepts, Methods and Applications

byJ.p. Marques De S

Paperback | December 5, 2012

Pricing and Purchase Info

$118.52 online 
$137.95 list price save 14%
Earn 593 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

Pattern recognition currently comprises a vast body of methods supporting the development of numerous applications in many different areas of activity. The generally recognized relevance of pattern recognition methods and techniques lies, for the most part, in the general trend of "intelligent" task emulation, which has definitely pervaded our daily life. Robot assisted manufacture, medical diagnostic systems, forecast of economic variables, exploration of Earth's resources, and analysis of satellite data are just a few examples of activity fields where this trend applies. The pervasiveness of pattern recognition has boosted the number of task­ specific methodologies and enriched the number of links with other disciplines. As counterbalance to this dispersive tendency there have been, more recently, new theoretical developments that are bridging together many of the classical pattern recognition methods and presenting a new perspective of their links and inner workings. This book has its origin in an introductory course on pattern recognition taught at the Electrical and Computer Engineering Department, Oporto University. From the initial core of this course, the book grew with the intent of presenting a comprehensive and articulated view of pattern recognition methods combined with the intent of clarifying practical issues with the aid of examples and applications to real-life data. The book is primarily addressed to undergraduate and graduate students attending pattern recognition courses of engineering and computer science curricula.
Title:Pattern Recognition: Concepts, Methods and ApplicationsFormat:PaperbackDimensions:318 pagesPublished:December 5, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3642626777

ISBN - 13:9783642626777

Look for similar items by category:

Reviews

Table of Contents

1 Basic Notions.- 1.1 Object Recognition.- 1.2 Pattern Similarity and PR Tasks.- 1.2.1 Classification Tasks.- 1.2.2 Regression Tasks.- 1.2.3 Description Tasks.- 1.3 Classes, Patterns and Features.- 1.4 PR Approaches.- 1.4.1 Data Clustering.- 1.4.2 Statistical Classification.- 1.4.3 Neural Networks.- 1.4.4 Structural PR.- 1.5 PR Project.- 1.5.1 Project Tasks.- 1.5.2 Training and Testing.- 1.5.3 PR Software.- 2 Pattern Discrimination.- 2.1 Decision Regions and Functions.- 2.1.1 Generalized Decision Functions.- 2.1.2 Hyperplane Separability.- 2.2 Feature Space Metrics.- 2.3 The Covariance Matrix.- 2.4 Principal Components.- 2.5 Feature Assessment.- 2.5.1 Graphic Inspection.- 2.5.2 Distribution Model Assessment.- 2.5.3 Statistical Inference Tests.- 2.6 The Dimensionality Ratio Problem.- Exercises.- 3 Data Clustering.- 3.1 Unsupervised Classification.- 3.2 The Standardization Issue.- 3.3 Tree Clustering.- 3.3.1 Linkage Rules.- 3.3.2 Tree Clustering Experiments.- 3.4 Dimensional Reduction.- 3.5 K-Means Clustering.- 3.6 Cluster Validation.- Exercises.- 4 Statistical Classification.- 4.1 Linear Discriminants.- 4.1.1 Minimum Distance Classifier.- 4.1.2 Euclidian Linear Discriminants.- 4.1.3 Mahalanobis Linear Discriminants.- 4.1.4 Fisher's Linear Discriminant.- 4.2 Bayesian Classification.- 4.2.1 Bayes Rule for Minimum Risk.- 4.2.2 Normal Bayesian Classification.- 4.2.3 Reject Region.- 4.2.4 Dimensionality Ratio and Error Estimation.- 4.3 Model-Free Techniques.- 4.3.1 The Parzen Window Method.- 4.3.2 The K-Nearest Neighbours Method.- 4.3.3 The ROC Curve.- 4.4 Feature Selection.- 4.5 Classifier Evaluation.- 4.6 Tree Classifiers.- 4.6.1 Decision Trees and Tables.- 4.6.2 Automatic Generation of Tree Classifiers.- 4.7 Statistical Classifiers in Data Mining.- Exercises.- 5 Neural Networks.- 5.1 LMS Adjusted Discriminants.- 5.2 Activation Functions.- 5.3 The Perceptron Concept.- 5.4 Neural Network Types.- 5.5 Multi-Layer Perceptrons.- 5.5.1 The Back-Propagation Algorithm.- 5.5.2 Practical aspects.- 5.5.3 Time Series.- 5.6 Performance of Neural Networks.- 5.6.1 Error Measures.- 5.6.2 The Hessian Matrix.- 5.6.3 Bias and Variance in NN Design.- 5.6.4 Network Complexity.- 5.6.5 Risk Minimization.- 5.7 Approximation Methods in NN Training.- 5.7.1 The Conjugate-Gradient Method.- 5.7.2 The Levenberg-Marquardt Method.- 5.8 Genetic Algorithms in NN Training.- 5.9 Radial Basis Functions.- 5.10 Support Vector Machines.- 5.11 Kohonen Networks.- 5.12 Hopfield Networks.- 5.13 Modular Neural Networks.- 5.14 Neural Networks in Data Mining.- Exercises.- 6 Structural Pattern Recognition.- 6.1 Pattern Primitives.- 6.1.1 Signal Primitives.- 6.1.2 Image Primitives.- 6.2 Structural Representations.- 6.2.1 Strings.- 6.2.2 Graphs.- 6.2.3 Trees.- 6.3 Syntactic Analysis.- 6.3.1 String Grammars.- 6.3.2 Picture Description Language.- 6.3.3 Grammar Types.- 6.3.4 Finite-State Automata.- 6.3.5 Attributed Grammars.- 6.3.6 Stochastic Grammars.- 6.3.7 Grammatical Inference.- 6.4 Structural Matching.- 6.4.1 String Matching.- 6.4.2 Probabilistic Relaxation Matching.- 6.4.3 Discrete Relaxation Matching.- 6.4.4 Relaxation Using Hopfield Networks.- 6.4.5 Graph and Tree Matching.- Exercises.- Appendix A-CD Datasets.- A.1 Breast Tissue.- A.2 Clusters.- A.3 Cork Stoppers.- A.4 Crimes.- A.5 Cardiotocographic Data.- A.6 Electrocardiograms.- A.7 Foetal Heart Rate Signals.- A.8 FHR-Apgar.- A.9 Firms.- A.10 Foetal Weight.- A.11 Food.- A.12 Fruits.- A.13 Impulses on Noise.- A.14 MLP Sets.- A.15 Norm2c2d.- A.16 Rocks.- A.17 Stock Exchange.- A.18 Tanks.- A.19 Weather.- Appendix B-CD Tools.- B.1 Adaptive Filtering.- B.2 Density Estimation.- B.3 Design Set Size.- B.4 Error Energy.- B.5 Genetic Neural Networks.- B.6 Hopfield network.- B.7 k-NN Bounds.- B.8 k-NN Classification.- B.9 Perceptron.- B.10 Syntactic Analysis.- Appendix C-Orthonormal Transformation.- Appendix C-Orthonormal Transformation.

Editorial Reviews

From the reviews of the first edition:"The book gives an overview about the wide field of pattern recognition. . The book is primarily addressed to undergraduate and graduate students of engineering and computer science courses. It gives a good introduction into the field of clustering and pattern recognition." (Hans-Peter Altenburg, Zentralblatt MATH, Vol. 1009, 2003)"'Patern Recognition' presents methods and techniques that are suitable for practical application in areas including robot assisted manufacture, medical diagnostic systems, forecast of economic variables, exploration of Earth's resources, and satellite data analysis. . This book provides comprehensive, non-specialist coverage of pattern recognition. Although primarily aimed at undergraduate and graduate engineering and computer science students, its clear and practical coverage also makes it suitable for physicians, biologists, geologists and economists." (Assembly Automation, Vol. 22 (4), 2002)