Radioactive and Stable Isotope Geology by H.-G. AttendornRadioactive and Stable Isotope Geology by H.-G. Attendorn

Radioactive and Stable Isotope Geology

byH.-G. Attendorn, R. Bowen

Paperback | October 3, 2012

Pricing and Purchase Info


Earn 1,990 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Accelerating progress in the application of radioactive and stable isotope analysis to a varied range of geologicla and geochemical problems in geology has required a complete revision ofIsotopes inthe Earth Sciences, published in 1988.
This new book comprises four parts: the first introduces isotopic chemistry and examines mass spectroscopic methods; the second eeals with radiometric dating methods. Part Three examines the importance of isotopes in climato-environmental studies, and increasingly significant area of research. The last part looks at extra-terrestrial matter, geothermometry and the isotopic geochemistry of the Earth's lithosphere.
Post-graduate and post-doctoral researchers in geochemistry, as well as final year undergraduates in the earth and environmental sciences, will findRadioactive and Stable Isotope Geologyan invaluable, uo-to-date and thorough treatment of the theory and practice of isotopie geology.
Title:Radioactive and Stable Isotope GeologyFormat:PaperbackDimensions:522 pagesPublished:October 3, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9401064679

ISBN - 13:9789401064675


Table of Contents

One General Introduction.- 1 Introduction.- 1.1 Mass spectrometry.- 1.1.1 Historical background.- 1.1.2 A moving charged particle in a magnetic field.- 1.2 Isotope effects and fractionation processes.- 1.2.1 Energy states of a molecule.- 1.2.2 Isotope separation in the laboratory.- 1.3 Spectroscopic methods.- 1.4 Isotope fractionation.- 1.4.1 Exchange reactions and kinetic fractionation.- 1.4.2 Biological fractionation.- 1.5 Secondary changes of isotope ratios.- 2 Nucleosynthesis:Fons et origoof the chemical elements in the universe and on Earth.- 3 Mass spectrometry.- 3.1 Modern mass spectrometers.- 3.1.1 Gas isotope ratio mass spectrometer (GIRMS).- 3.1.2 External options for GIRMS system configurations.- 3.1.3 Preparation of samples for the GIRMS.- 3.1.4 Other mass spectrometers.- Two Unstable (radioactive) isotope dating.- 4 Uranium-thorium-lead dating.- 4.1 Geochemistry.- 4.2 Methodology.- 4.2.1 Theory: concordia and discordia, isochrons, common, anomalous and multistage leads.- 4.3 Applications.- 5 Uranium series disequilibrium dating.- 5.1 Ionium dating of deep-sea sediments.- 5.2 234U_238U geochronometer.- 5.3 230Th-238U and 230Th-234U dating.- 5.4 Assessing 230Th/U ages in impure carbonates.- 5.5 230Th-231Pa dating.- 5.6 210Pb dating.- 5.7 Actinide-series disequilibrium used to determine chronology of deep-sea hydrothermal activity.- 6 Uranium-xenon and uranium-krypton dating.- 6.1 Theory.- 6.2 Fissiogenic rare gases in the atmosphere.- 7 Rubidium-strontium dating.- 7.1 Geochemistry.- 7.2 Methodology.- 7.2.1 Theory.- 7.2.2 Isochrons and fictitious isochrons.- 7.3 Applications.- 7.3.1 Sphalerite dating and genesis of MVT ores.- 7.3.2 Rb-Sr data of a volcanoplutonic complex (Late Hercynian), Italy.- 7.3.3 Age of the Hercynian orogeny by Rb-Sr dating.- 7.3.4 Disturbance of Rb-Sr system in Schwarzwald (Variscan) granites.- 7.3.5 Magmatic and hydrothermal REE fractionation in Chinese granites.- 7.3.6 Strontium through time.- 8 Potassium-argon and argon-argon dating.- K-Ar dating.- 8.1 Geochemistry.- 8.2 Methodology.- 8.2.1 Theory.- 8.2.2 Argon loss.- 8.2.3 Isochrons.- 8.2.4 Sedimentary rocks and minerals.- 8.2.5 Argon from the mantle.- 8.2.6 Blocking temperature and the metamorphic veil.- 8.2.7 Geomagnetic polarity reversals.- 8.3 Application: diamonds.- 40Ar-39Ar Dating.- 8.4 Geochemistry.- 8.5 Methodology.- 8.5.1 Thermochronological data through incremental Heating.- 8.5.2 Argon release by lasers.- 8.6 Applications.- 8.6.1 The Jaramillo normal subchron and the matayumaBrunhes geomagnetic boundary.- 8.6.2 A Burgidalian (Miocene I) age for extensional ductile tectonics in the Edough Massif, Kabylies, Algeria, from40Ar/39Ar data.- 8.6.3 Preliminary40Ar/39Ar age spectrum and laser probe dating of the MI core of the manson impact structure - a K-T boundary crater candidate.- 8.6.440Ar/39Ar fusion ages from the Polish sudetes.- 8.6.5 Using the40Ar/39Ar method to date mylonitic deformation.- 8.6.6 Meteorites.- 8.6.740Ar/39Ar isotope study of lunar meteorite Asuka 881757.- 8.6.8 Diamonds.- 9 Carbon-14 dating.- 9.1 Background.- 9.2 Discovery.- 9.3 Production of 14C and its uses in dating.- 9.4 Carbonate samples.- 9.5 Isotope fractionation.- 9.6 Analytical methods.- 10 Tritium dating.- 10.1 Background.- 10.2 Tritium dating.- 11 Other methods.- 11.1 137Cs/135Cs as a chronometer tracer.- 11.1.1 Geochemistry.- 11.1.2 Application.- 11.2 I-Xe dating.- 11.3 La-Ce dating.- 11.3.1 Geochemistry.- 11.3.2 Theory.- 11.3.3 Constraints on the138La?-decay half-life.- 11.4 Lu-Hf dating.- 11.4.1 Geochemistry.- 11.4.2 Assessment of ages.- 11.4.3 Hafnium in Earth history.- 11.553Mn dating.- 11.6 59Ni dating.- 11.7 Po-Pb dating.- 11.7.1 Geochemistry.- 11.7.2 Methodology.- 11.8 K-Ca dating.- 11.8.1 Calcium isotope fractionation.- 11.8.2 K-Ca dating approach.- 11.8.3 K-Ca chronology of lunar granites.- 11.9 Re-Os dating.- 11.9.1 Geochemistry.- 11.9.2 Assessment of ages.- 11.9.3 Osmium through Earth history.- 11.9.4 Common Os dating.- 11.9.5 Osmium isotope analyses using a Finnigan MAT 262.- 11.10 'Os-Os' (187Os/186Os and187Os/188Os) Methods of dating.- 11.11 Sm-Nd dating.- 11.11.1 Geochemistry.- 11.11.2 Assessment of ages.- 11.11.3 Neodymium through Earth history.- 12 Radiation damage dating methods.- 12.1 Electron Spin resonance.- 12.2 Fission track dating.- 12.3 Pleochroic haloes.- 12.4 Thermoluminescence.- 12.4.1 Induced thermoluminescence technique.- 13 Cosmogenic radionuclides.- 13.1 Dating with cosmogenic radionuclides.- 13.281Kr dating.- 13.2.1 Geochemistry.- 13.2.281Kr terrestrial ages of eucrites.- Three Stable isotopes in the biosphere.- 14 Relevant stable isotopes in nature.- 14.1 Oxygen and hydrogen isotopes.- 14.2 Nitrogen isotopes.- 14.2.1 Nitrogen in natural waters.- 14.3 Carbon isotopes.- 14.3.1 Biospheric C isotopes.- 14.3.2 Atmospheric C.- 14.3.3 Marine C.- 14.3.4 Freshwater and terrestrial C.- 14.4 Sulphur isotopes.- 14.5 Strontium isotopes.- 14.6 Chlorine isotopes.- 14.7 Silicon isotopes.- 14.8 Isotopes of noble gases.- 15 Isotopes in palaeoclimatology and palaeoecology.- 15.1 Marine isotope palaeothermometry.- 15.2 Isotopic composition of sea water.- 15.3 Relevant180-determining parameters.- 15.4 Palaeotemperature determinations.- 15.5 Foraminifera.- 15.6 Bivalves.- 15.7 Other taxa.- 16 Other applications of biospheric carbon and oxygen.- 16.1 Carbon isotopes in organic matter.- 16.1.1 Isotopes in fossil fuel.- 16.2 Isotopes in terrestrial plants.- 16.3 Isotopes and diet.- 16.4 Isotopes as Stratigraphic Tools and Event Markers.- Four Isotopes in the lithosphere.- 17 Extraterrestrial matter.- 17.1 Isotopes in meteorites and lunar rocks.- 17.1.1 Impact and tektites.- 17.1.2 Exposure ages of meteorites.- 18 Isotopes in rocks and minerals.- 18.1 Isotopes in rock/mineral-water systems.- 18.2 Magmatic rocks.- 18.3 Sedimentary rocks.- 18.4 Metamorphic rocks.- 18.5 Ore deposits.- 19 Isotope geothermometers.- References.- Author Index.

Editorial Reviews

...recommended for science libraries and laboratory reference shelves... - Nature; ...this is a book that is full of much useful information, and is written in a clear and pleasing style. - Journal of Petrology