Ramified Integrals, Singularities and Lacunas by V.A. VassilievRamified Integrals, Singularities and Lacunas by V.A. Vassiliev

Ramified Integrals, Singularities and Lacunas

byV.A. Vassiliev

Paperback | October 13, 2012

Pricing and Purchase Info

$168.27 online 
$178.50 list price save 5%
Earn 841 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Many special functions occuring in physics and partial differential equations can be represented by integral transformatIons: the fundamental solutions of many PDE's, Newton-Coulomb potentials, hypergeometric functions, Feynman integrals, initial data of (inverse) tomography problems, etc. The general picture of such transfor­ mations is as follows. There is an analytic fibre bundle E --+ T, a differential form w on E, whose restrictions on the fibres are closed, and a family of cycles in these fibres, parametrized by the points of T and depending continuously on these points. Then the integral of the form w along these cycles is a function on the base. The analytic properties of such functions depend on the monodromy action, i.e., on the natural action of the fundamental group of the base in the homology of the fibre: this action on the integration cycles defines the ramification of the analytic continuation of our function. The study of this action (which is a purely topological problem) can answer questions about the analytic behaviour of the integral function, for instance, is this function single-valued or at least algebraic, what are the singular points of this function, and what is its asymptotics close to these points. In this book, we study such analytic properties of three famous classes of func­ tions: the volume functions, which appear in the Archimedes-Newton problem on in­ tegrable bodies; the Newton-Coulomb potentials, and the Green functions of hyperbolic equations (studied, in particular, in the Hada­ mard-Petrovskii-Atiyah-Bott-Garding lacuna theory).
Title:Ramified Integrals, Singularities and LacunasFormat:PaperbackDimensions:294 pagesPublished:October 13, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9401040958

ISBN - 13:9789401040952


Table of Contents

Introduction. I. Picard-Lefschetz-Pham theory and singularity theory. II. Newton's theorem on the nonintegrability of ovals. III. Newton's potential of algebraic layers. IV. Lacunas and the local Petrovskii condition for hyperbolic differential operators with constant coefficients. V. Calculation of local Petrovskii cycles and enumeration of local lacunas close to real function singularities. Appendix: a FORTRAN program searching for the lacunas and enumerating the morsifications of real function singularities. Bibliography. Index.