Recent Progress in Operator Theory: International Workshop on Operator Theory and Applications, IWOTA 95, in Regensburg, July 31-August by Israel C. GohbergRecent Progress in Operator Theory: International Workshop on Operator Theory and Applications, IWOTA 95, in Regensburg, July 31-August by Israel C. Gohberg

Recent Progress in Operator Theory: International Workshop on Operator Theory and Applications…

byIsrael C. GohbergEditorReinhard Mennicken, Christiane Tretter

Paperback | October 12, 2012

Pricing and Purchase Info

$182.10 online 
$193.50 list price save 5%
Earn 911 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

This and the previous volume of the OT series contain the proceedings of the Workshop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob­ lems, starting with problems for abstract operators up to spectral theory of ordi­ nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems.
Title:Recent Progress in Operator Theory: International Workshop on Operator Theory and Applications…Format:PaperbackDimensions:288 pagesPublished:October 12, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034897766

ISBN - 13:9783034897761

Reviews

Table of Contents

Inversion formulas for compressions of block-Toeplitz operators.- 1. Introduction.- 2. Main results.- 3. Inversion formulas for block-Toeplitz and block-Pick matrices.- 4. Inversion formulas for block-Toeplitz integral operators in 5-1 (0, a) (a <_20_3f_29_.-20_references.-20_contractive20_linear20_relations20_in20_pontryagin20_spaces.-20_1.20_introduction.-20_2.20_contractive20_linear20_relations.-20_3.20_regularization.-20_4.20_criteria20_for20_maximality.-20_5.20_properties20_of20_maximal20_contractive20_linear20_relations.-20_6.20_invariant20_subspaces.-20_references.-20_on20_a20_new20_algorithm20_for20_almost20_periodic20_factorization.-20_1.20_introduction.-20_2.20_known20_results.-20_3.20_the20_reduction20_procedure.-20_4.20_matrices20_with20_regular20_fourier20_spectra.-20_5.20_repeated20_use20_of20_the20_reduction20_procedure.-20_6.20_trinomial20_f.-20_7.20_block20_matrix20_generalizations.-20_8.20_final20_remarks.-20_references.-20_on20_the20_normal20_solvability20_of20_cohomological20_equations20_on20_compact20_topological20_spaces.-20_1.20_introduction.-20_2.20_dynamical20_lemmas.-20_3.20_proof20_of20_the20_main20_theorem.-20_4.20_appendix.-20_references.-20_on20_nonnegative20_realizations20_of20_rational20_matrix20_functions20_and20_nonnegative20_input-output20_systems.-20_1.20_introduction.-20_2.20_nonnegative20_realizations20_of20_rational20_matrix20_functions.-20_3.20_nonnegative20_input20_output20_systems.-20_4.20_appendix.-20_references.-20_on20_the20_geometric20_structure20_of20_regular20_dilations.-20_1.20_notations20_and20_preliminaries.-20_2.20_the20_structure20_of20_regular20_and20_2a_-regular20_isometric20_dilations.-20_3.20_functional20_model20_and20_maximal20_function20_for20_a20_bicontraction20_having20_a20_2a_-regular20_dilation.-20_references.-20_on20_generalized20_interpolation20_and20_shift20_invariant20_maximal20_semidefinite20_subspaces.-20_1.20_introduction.-20_2.20_preliminaries.-20_3.20_generalized20_interpolation.-20_4.20_the20_bitangential20_nevanlinna-pick20_problem.-20_references.-20_the20_sum20_of20_matrix20_nevanlinna20_functions20_and20_self-adjoint20_extensions20_in20_exit20_spaces.-20_1.20_introduction.-20_2.20_nevanlinna20_pairs.-20_3.20_kre20_6-120_n27_27_s20_formula.-20_4.20_the20_sum20_of20_q-functions.-20_5.20_the20_orthogonal20_sum20_of20_sturm-liouville20_operators.-20_6.20_schur20_complements20_of20_q-functions.-20_7.20_nevanlinna20_functions20_and20_exit20_spaces.-20_references.-20_properties20_of20_22_derived22_20_hankel20_matrices.-20_1.20_introduction.-20_2.20_representations20_of20_m-derived20_hankel20_matrices.-20_3.20_vandermonde20_factorization.-20_4.20_generating20_functions20_and20_bezoutians.-20_5.20_triangular20_derived20_hankel20_matrices.-20_references.-20_the20_probability20_that20_a20_28_partial29_20_matrix20_is20_positive20_semidefinite.-20_1.20_introduction.-20_2.20_the20_case20_of20_full20_matrices.-20_3.20_the20_case20_of20_partial20_matrices.-20_4.20_the20_probability20_of20_the20_existence20_of20_a20_positive20_semidefinite20_completion.-20_references.-20_factorization20_of20_lower20_triangular20_unitary20_operators20_with20_finite20_kronecker20_index20_into20_elementary20_factors.-20_1.20_introduction.-20_2.20_unitary20_time20_varying20_systems.-20_3.20_observability20_and20_controllability20_of20_unitary20_time20_varying20_systems.-20_4.20_a20_realization20_theorem.-20_5.20_cascade20_connection20_and20_factorization.-20_6.20_proof20_of20_theorems20_1.120_and20_1.2.-20_7.20_main20_theorems20_for20_operators20_in20_the20_class20_lk.-20_references.-20_fredholm20_theory20_of20_interpolation20_morphisms.-20_1.20_introduction.-20_2.20_fredholm20_theory20_in20_a20_paraalgebra20_of20_interpolation20_morphisms.-20_3.20_interpolation20_of20_fredholm20_elements.-20_4.20_perturbation20_results20_for20_the20_real20_interpolation20_methods.-20_references.-20_resolvents20_of20_symmetric20_operators20_and20_the20_degenerated20_nevanlinna-pick20_problem.-20_1.20_introduction.-20_2.20_straus20_extensions.-20_3.20_the20_u-resolvents20_of20_s.-20_4.20_the20_degenerated20_nevanlinna-pick20_problem.-20_5.20_explicit20_formulas.-20_references.-20_perturbation20_of20_linear20_semigroups.-20_1.20_introduction.-20_2.20_essential20_spectral20_radius20_for20_perturbed20_semigroups.-20_references.-20_on20_the20_approximation20_of20_operators20_and20_the20_convergence20_of20_the20_spectra20_of20_the20_approximants.-20_1.20_introduction.-20_2.20_the20_main20_result.-20_3.20_auxiliary20_results20_and20_proofs.-20_references. .-="" references.-="" contractive="" linear="" relations="" in="" pontryagin="" spaces.-="" 1.="" introduction.-="" 2.="" relations.-="" 3.="" regularization.-="" 4.="" criteria="" for="" maximality.-="" 5.="" properties="" of="" maximal="" 6.="" invariant="" subspaces.-="" on="" a="" new="" algorithm="" almost="" periodic="" factorization.-="" known="" results.-="" the="" reduction="" procedure.-="" matrices="" with="" regular="" fourier="" spectra.-="" repeated="" use="" trinomial="" f.-="" 7.="" block="" matrix="" generalizations.-="" 8.="" final="" remarks.-="" normal="" solvability="" cohomological="" equations="" compact="" topological="" dynamical="" lemmas.-="" proof="" main="" theorem.-="" appendix.-="" nonnegative="" realizations="" rational="" functions="" and="" input-output="" systems.-="" functions.-="" input="" output="" geometric="" structure="" dilations.-="" notations="" preliminaries.-="" _2a_-regular="" isometric="" functional="" model="" function="" bicontraction="" having="" dilation.-="" generalized="" interpolation="" shift="" semidefinite="" interpolation.-="" bitangential="" nevanlinna-pick="" problem.-="" sum="" nevanlinna="" self-adjoint="" extensions="" exit="" pairs.-="" kre="" 6-1="" _n27_27_s="" formula.-="" q-functions.-="" orthogonal="" sturm-liouville="" operators.-="" schur="" complements="" _22_derived22_="" hankel="" matrices.-="" representations="" m-derived="" vandermonde="" generating="" bezoutians.-="" triangular="" derived="" probability="" that="" _28_partial29_="" is="" positive="" semidefinite.-="" case="" full="" partial="" existence="" completion.-="" factorization="" lower="" unitary="" operators="" finite="" kronecker="" index="" into="" elementary="" factors.-="" time="" varying="" observability="" controllability="" realization="" cascade="" connection="" theorems="" 1.1="" 1.2.-="" class="" lk.-="" fredholm="" theory="" morphisms.-="" paraalgebra="" elements.-="" perturbation="" results="" real="" methods.-="" resolvents="" symmetric="" degenerated="" straus="" extensions.-="" u-resolvents="" s.-="" explicit="" formulas.-="" semigroups.-="" essential="" spectral="" radius="" perturbed="" approximation="" convergence="" spectra="" approximants.-="" result.-="" auxiliary="" proofs.-="">